
Chapter I

Introduction and
summary

The topic of this PhD thesis is the stability of flattened galaxy models. The
first and last words of the title cover the bulk of the research presented in
the following chapters. Before we delve into the realms of the construction of
galaxy models and the stability analysis thereof, we describe the objects that
are studied: flattened, axisymmetric galaxy models. We also give an overview
of the contents of the next chapters.
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E2 (M49) E5 (M59) E6 (NGC205)
Figure 1. Elliptical galaxies vary from nearly round to strongly flattened.

1 The nature of elliptical galaxies

It became clear in the mid 1920s that galaxies are huge stellar systems. Based on their
visual appearance, most galaxies can be classified as disk or elliptical systems. Many
disk galaxies look very impressive, showing a spiral pattern and other spectacular
features. In contrast, ellipticals look rather boring (Figure 1).

Delineating the dynamical structure of galaxies is one of the major topics of
astronomical research. In a galaxy billions of stars move in the combined gravita-
tional field almost without direct encounters. Measurement of the stellar motions
is restricted by projection effects. Only the radial velocity distribution, integrated
along the line of sight, can be obtained. Instead of measuring the stellar motions, it
turned out to be easier to observe the Doppler shift in the emission lines of a gaseous
component, such as neutral hydrogen, which is present in most spiral galaxies. The
gas and stars do not have the same kinematics, but the motion of both is governed
by the galactic potential. Observations showed that the bulk of the stars in spirals
have almost circular orbits. In the majority of ellipticals gas is absent, and measure-
ments of the Doppler shift in absorption lines proved to be a more difficult task.
Led by the visual appearance of ellipticals, it was generally accepted until the mid
1970s that these galaxies have an oblate spheroidal shape. The luminosity profiles
were consistent with truncated isothermal spheroids (Gott 1973, Wilson 1975), in
which the rapid rotation is responsible for the flattening.

Twenty years ago new observations changed this picture dramatically. It was
the measurement of the rotation of NGC4697 by Bertola & Capaccioli (1975) that
started the revolution: the rotation was too low by a factor of three compared to
the value predicted by the dynamical models. The significance was soon realized
(Binney 1976): the flattening could not be explained by rotation. As data for more
galaxies became available, it turned out that NGC4697 in fact is one of the faster
rotators. Instead of being more or less isothermal, with a distribution function
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(hereafter DF) that depends on the energy E and angular momentum Lz only, a
realistic dynamical model for an elliptical galaxy should have a three-integral DF.
Measurement of the kinematics in the solar neighbourhood had shown much earlier
that our own Galaxy also has a three-integral DF, and approximations for the third
integral had been derived (e.g., Contopoulos 1960; Ollongren 1962). Similarly, there
is now abundant evidence for the existence of a third integral in theoretical studies
of the orbits in elliptical galaxies (Schwarzschild 1979; de Zeeuw 1985).

The view of an elliptical as being an oblate spheroid also had to be adjusted.
Three-integral models can be made for prolate spheroidal and triaxial densities as
well. From a theoretical point of view there is no compelling reason that the angular
momentum Lz should be an integral of motion (Binney 1978). Hence a model where
Lz is conserved, i.e., an axisymmetric system, is considered to be a special case of
the general class of triaxial models. As galaxies that satisfy special conditions are
rare, one expects that most of the ellipticals are triaxial. Indeed the photometric
data showed that in many galaxies the ellipticity of the isophotes varies with radius
(King 1978; Williams & Schwarzschild 1979; Leach 1981). Since the projection of
a spheroidal model does not exhibit this behaviour, isophote twisting forms direct
evidence for the triaxial shape of ellipticals. More recently, e.g., Davies & Birkinshaw
(1986) found strong minor axis rotation, which is only possible in prolate or triaxial
models. In the last two decades new observations and theoretical studies have
demonstrated that there is a rather large variation of shapes and dynamical contents
within the family of elliptical galaxies (see de Zeeuw & Franx (1991) for a review),
but the general view has not changed greatly.

The dynamical structure of ellipticals also provides insight in the process of
galaxy formation. From the study of galaxy models we can infer the distribution
of shapes and dynamical contents of ellipticals as a class: from a purely dynamical
point of view, all stable models are equally likely to occur. If certain models pre-
vail among the galaxies observed in the Universe, that must be due to a selection
mechanism at the time the galaxy was formed.

2 Dynamical models for ellipticals

Observations of elliptical galaxies do not provide the dynamical structure directly.
Three of the six phase space dimensions are inaccessible: the position along and
velocity perpendicular to the line of sight are not measurable. Instead we can
only determine which of the vast number of possible phase-space distributions are
compatible with the data. However, to understand the nature of ellipticals we do not
need to know the exact phase-space structure of individual galaxies. We are more
interested in the characteristics of ellipticals as a class. But it is important to know
the range of dynamical models that are consistent with the observed properties of
a particular galaxy. Hence it is important that we are able to build a fairly complete
library of models for a given configuration.
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Figure 2. The volume filled by a general
(short axis tube) orbit in a Stäckel mass model,
truncated at an isodensity surface.

There are few methods available for constructing dynamical models for a given
spheroidal or triaxial mass density. For the construction of spheroidal two-integral
DFs that depend on E and Lz there are methods (Lynden-Bell 1962, Hunter 1975,
Dejonghe 1986) that require analytic knowledge of the density as a function of
the potential and radius. Hunter and Qian (1993) found a more general inversion
formula that relaxes this condition. There are also numerical methods to solve the
two-integral DF from the density; they are based on either Lucy’s method (Lucy
1974), maximum entropy (Richstone 1987), series expansion (Dehnen & Gerhard
1994) and linear programming techniques (Schwarzschild 1979, 1982). The latter
has also been used to produce triaxial galaxy models.

Construction of three-integral DFs is more difficult. Part of the problem is
the fact that only in special cases an explicit expression for the third integral is
known. Dynamical models based on other potentials can be built by a linear
programming technique (Schwarzschild 1979, 1982; Richstone 1980, 1982, 1984;
Levison & Richstone 1985a, b) or by use of an approximate integral (Petrou 1983a,
b; Dehnen & Gerhard 1993). There is a large class of models that have so-called
Stäckel potentials: the equations of motion separate in a suitable coordinate system.
For these models the third integral is known analytically and a complete orbital
classification can be made (de Zeeuw 1985). The models investigated in this thesis
are all oblate Stäckel models; Figure 2 shows a general orbit in such a galaxy. The
volume occupied by an orbit is aligned with prolate spheroidal coordinates.

Even when the third integral is known, it is still difficult to build a three-integral
dynamical model. Many orbits with different values for all three integrals can pass
through the same point, contributing to the density there (Figure 3). The density is
then related to the DF by an integral equation. Solving this equation is feasible only
by numerical means. There are special models for which the three-integral DF can
be found analytically: models populated only by thin orbits. A star on a thin orbit
has essentially no radial motion because the orbit lies on a shell. In this case the
inversion from density to DF is a one-dimensional problem (Figure 3) which can be
solved analytically (Bishop 1987, de Zeeuw & Hunter 1990).

In Chapter 2 we present a new algorithm to derive a three-integral DF from the
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Figure 3. A sample of the orbits that contribute to the density at a given point (big dot) in
an oblate galaxy model, where the symmetry axis is aligned with the z axis. For thin-orbit models
(left) the orbits lie on a line in the three-integral space; in general (right) they are drawn from a
three-dimensional subspace.

ρ := Model density
f := 0

f := f + fthin-orbit

ρ := ρ - ρfg

Solve fthin-orbit for ρ

Compute ρfg for fthin-orbit gε

The DF is f gε

ρ small enough?
YesNo

Assume gε

Figure 4. The iterative scheme used to construct dynamical models from a given model density.

density. We do not solve the full 3D problem; instead we assume part of the DF
(a one-parameter family of functions gε that depend on three integrals) and solve
for a two-integral function f so that the DF is fgε . The thin-orbit DF is of this form
with gε a delta function in one of the integrals. The basic idea is that two solutions
f will be very similar if the corresponding g-functions are alike. This idea was first
employed by Shu (1969). We take it one step further and show that it can be used
successfully in an iterative numerical scheme (Figure 4). Since the method uses the
analytic thin-orbit solutions, most computer time is spent in computing residual
densities from a DF by a simple quadrature.

The algorithm is applied to build several dynamical models for a given mass
distribution. It performs quite well as long as orbits with zero angular momentum
are excluded. It is shown that the DF does not depend strongly on the shape of the
function gε : only the first order moments are important (the precise definition of
moments is given in Chapter 2; basically it is a weighted integral of g). The same
is true for the projected velocity moments. The consequence of this is that we can
not hope to determine the shape of the gε function unless we have very accurate
velocity profiles. On the other hand, it provides us with a useful parametrization
of models for ellipticals by means of the moments of gε .



6 Chapter I

3 Stability of dynamical models

It is generally assumed that the elliptical galaxies are in dynamical equilibrium, at
least in their inner parts. Hence models of the kind constructed in Chapter 2 can be
used to fit observational data. As ellipticals are long-lived systems, with ages of the
order of a hundred galactic years, there is an additional requirement that models
should satisfy: they must be stable. Most ellipticals are members of galaxy clusters
and the distant interaction with its fellow members may be strong enough to cause
instabilities to reshape the elliptical. Hence models that are subject to instabilities
that grow on time scales much less than a Hubble time are not realistic and should
be discarded.

The methods for examining the stability of galaxy models were pioneered for
disk and spherical galaxies. These systems are much simpler than spheroidal or
triaxial galaxies because they have a higher degree of symmetry. For spherical
systems, Antonov (1962) was able to derive analytic stability criteria. He also
discovered (Antonov 1973) the radial orbit instability: if the fraction of the stars
that move on predominantly radial orbits is too large, the system is subject to the
formation of a bar. This instability has been found in non-spherical models as well
(Palmer, Papaloizou & Allen 1991). The radial orbit instability appears to be the
only result relevant to realistic spherical galaxy models.

Disk galaxies are prone to more instabilities. Apart from warping and other
modes that have a three-dimensional nature, many unstable modes have been
found for flat disks ranging from cold (all stars move on circular orbits) to hot (stars
on radial orbits) models (e.g., Kalnajs 1971; Zang & Hohl 1978; Athanassoula &
Sellwood 1986; Araki 1987; Hunter 1992). Oblate spheroidal galaxies connect the
disks and spheres: for every mode found in disks there must be a critical flattening
of a spheroidal model where the instability sets in. This field is largely unexplored;
only a few papers have been devoted to spheroidal models:

(�) oblate homogeneous spheroids (Vandervoort 1991) can be treated analyt-
ically. Although homogeneous models are not very realistic, it still is worthwhile
to examine these models. Some of the instabilities are an artefact of the constant
density, others may also be found in other models.

(�) Palmer, Papaloizou & Allen (1991) examined the radial orbit instability in
axisymmetric models. They found that models in which many stars move on pre-
dominantly radial orbits are subject to a bar-forming mode. This type of instability
is also present in disk and spherical systems. It puts an upper limit on the radial
velocity dispersion of a realistic model.

(�) Merritt & Hernquist (1991) tested prolate thin-orbit models using N-body
simulations, and found that these models become unstable to bending modes if they
are more flattened than E7. A flattening of E7 is a magical boundary: no ellipticals
have been found that are more flattened than E7 (Binney & de Vaucouleurs 1981). A
possible explanation for the gap between disk and elliptical galaxies was proposed
by Fridman & Polyachenko (1984), who suggest that all very flattened galaxies
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4πGδρP = ∇2δΦ
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δρP = δρB

Integration

δρB = δf d3v∫

Boltzmann equation

∂
∂tδf + [δf,H0] + [f0,δΦe-iωt] = 0

Figure 5. Finding an unstable mode of a system characterized by the Hamiltonian H0 and initial
DF f0. Expanding the perturbation in a basis of potential-density pairs turns the final equality into a
matrix equation.

are unstable. The presence of bending modes in thin-orbit models supports that
hypothesis.

(�) Merritt & Stiavelli (1990) used N-body simulations to study modes of thin-
orbit oblate spheroids with no net rotation. They found that E6 and more flattened
models are unstable to an axisymmetric ring instability. The existence of this mode
was confirmed by de Zeeuw & Schwarzschild (1991) using the analytic Goodman
(1988) indicator. Merritt & Stiavelli (1990) also found a lopsided (m = 1) mode for
nearly all flattened systems, which was present in more spherical models as well.
They could trace it to models as round as E2, but suggested that the instability also
occurred in E1 models.

Although N-body simulations can be used to investigate the stability of galaxy
models, they are best suited for relatively strong instabilities. All current N-body
techniques suffer from noise in phase space: even in an unperturbed equilibrium
model a star which starts out in one orbit will be found in a slightly different orbit
after several time steps. For a simulation of a violently unstable model, where the
change in a star’s orbit due to the perturbation dominates, the numerical noise is
not very important. For more subtle modes, the effect on the orbits is of the same
magnitude as the noise. In this case it is hard to distinguish between an intrinsic
mode of a model and the noise-induced density fluctuations.

In the second part of this thesis we examine nearly spherical oblate models us-
ing a semi-analytical method (Figure 5), pioneered by Kalnajs (1977) to study disk
models. In this so-called matrix method the response of the orbits to a perturba-
tion is determined in analytical terms, although the actual computations are done
numerically. An unstable mode is found when the perturbation, which grows in
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amplitude with time, induces a response that equals the perturbation. By expand-
ing the perturbation and response density in a basis of potential-density pairs, this
equality is turned into a matrix equation. This method has recently been used by
Hunter (1992) for disk systems, and by Polyachenko & Shukhman (1981), Palmer
& Papaloizou (1987), Weinberg (1989, 1991), Saha (1991) and Bertin et al. (1994) for
spherical galaxies.

In the matrix method noise in phase-space is absent: the orbits can be deter-
mined to arbitrary precision. The main source of error lies in the choice of basis
functions for the perturbation. Acceptable results are only obtained if the response
density can be represented accurately in the basis set. Since the errors in the matrix
method have a different origin, it complements N-body simulations.

In Chapter 3 we discuss a method to construct a basis of potential-density pairs
that is very flexible, and allows the selection of a basis that matches the mode shape,
provided, of course, that we know what the mode looks like.

Chapter 4 describes the implementation of the matrix method for moderately
flattened, oblate galaxy models with low radial velocity dispersion. As a limiting
case, the thin-orbit models studied by Merritt & Stiavelli (1990) are included. We
confirm their suspicion that all oblate, non-rotating thin-orbit models are unstable
to a lopsided instability, and examine the effect of net rotation. The instability
disappears when the dynamical temperature, or the radial velocity dispersion, of
the models increases. We give an estimate of the boundary between stable and
unstable models.
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Chapter II

Three–integral oblate
galaxy models

A simple numerical scheme is presented for the construction of three-integral
phase-space distribution functions for oblate galaxy models with a gravita-
tional potential of Stäckel form, and an arbitrary axisymmetric luminous
density distribution. The intrinsic velocity moments can be obtained simul-
taneously with little extra effort. The distribution of the inner and outer
turning points of the short-axis tube orbits that are populated can be specified
freely, and is chosen in advance. The entire distribution function is then
derived from the density by an iterative scheme that starts from the explicitly
known distribution function of the thin-orbit (maximum streaming) model, in
which only the tubes with equal inner and outer turning points are populated.
The versatility and limitations of this scheme are illustrated by the construc-
tion of a number of self-consistent three-integral flattened isochrone models of
Kuzmin-Kutuzov type, and by investigation of special cases where the scheme
is tractable analytically. This includes the behaviour of the distribution func-
tions in the outer regions of the models. The scheme converges rapidly for
models containing orbits with ratios of the outer to inner turning point as
large as ten, and is particularly suited for the construction of tangentially
anisotropic flattened models, self-consistent as well as non-consistent. The
algorithm simplifies in the disk and spherical limit, and can be generalized to
triaxial models.

Preliminary version of a paper co-authored by P.T. de Zeeuw.
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1 Introduction

The observable properties of elliptical galaxies indicate that their internal dynamics
is governed by three integrals of motion (Binney 1976, 1978). For oblate systems
two of the three are known, the energy E and the angular momentum component Lz
along the symmetry axis. An exact third integral I3 exists only for special classes of
potentials, but adequate approximations have been derived for moderately flattened
axisymmetric models (e.g., Saaf 1968; Innanen & Papp 1977; Gerhard & Saha 1991).

The construction of the full class of dynamical models for elliptical galaxies is
a major undertaking. Progress has been made recently on a number of fronts, in
particular for oblate systems. Even though elliptical galaxies as a class have triaxial
shapes, the majority may well be nearly oblate (Franx, Illingworth & de Zeeuw 1991),
so that oblate models are useful. Various practical methods have been developed
for the construction of the special model with phase-space distribution function
f = f(E,Lz) (Hunter & Qian 1993; Dehnen & Gerhard 1994; Magorrian 1995; Kuijken
1995; Qian et al. 1995).

An exact third integral is known explicitly for the class of flattened models with
a potential of Stäckel form (Kuzmin 1956; de Zeeuw 1985, hereafter dZ), and some
self-consistent three-integral dynamical models of this type have been constructed,
e.g., by numerical methods (Bishop 1986; 1987) or by series expansions (Dejonghe
& de Zeeuw 1988, hereafter DZ). The distribution function for the model with the
maximum possible streaming motions can be found by a single quadrature over
the density (Bishop 1987; de Zeeuw & Hunter 1990, hereafter ZH). In oblate Stäckel
models all orbits are short-axis tubes, but only those with vanishing radial action —
which lie on spheroidal shells — are populated in the maximum streaming model.
They are often referred to as thin (tube) orbits, and the corresponding model is called
the thin-orbit model. These flattened models connect the sphere made exclusively of
circular orbits with the similar axisymmetric disk.

When no exact I3 is known, dynamical models can be constructed by numerical
methods (e.g., Richstone 1980, 1982, 1984; Levison & Richstone 1985a, b) or by use
of an approximate integral (Petrou 1983a, b). This approach has been employed re-
cently by Dehnen & Gerhard (1993), who constructed a large family of approximate
three-integral distribution functions for a flattened isochrone model, and investi-
gated the relation between the internal dynamics and the observable kinematics.
Their method is applicable to a wide variety of mass models with realistic density
profiles. The one application that has been published so far is for a mass model that
is nearly identical to the Kuzmin-Kutuzov model. This has a Stäckel potential, and
its exact third integral has been used to construct a number of distribution functions
(DZ, ZH).

Little is known about the stability of flattened galaxy models. Some N-body
simulations have been carried out (Merritt 1987; Merritt & Stiavelli 1990), but the
paucity of available distribution functions to set up the initial conditions is one
of the main reasons for our lack of knowledge. In Chapter 4 we show that the



Three–integral oblate galaxy models 13

linear stability analysis pioneered by Kalnajs (1977) for axisymmetric disks, and
subsequently used by e.g., Polyachenko & Shukhman (1981), Palmer & Papaloizou
(1987), Weinberg (1989, 1991) and Saha (1991, 1992) to study spherical models, also
can be carried out for oblate Stäckel models. One of the first applications is a study
of the thin orbit models, which have been shown by N-body simulations to be
liable to ring- and lopsided instabilities, depending on the flattening of the model.
Based on studies of spheres and flat disks, we expect that an increase in the amount
of radial support will stabilize the radially ‘cold’ thin-orbit models. In order to
investigate this, we need distribution functions for models in which not only the
thin short-axis tubes are populated, but also ‘thick’ tube orbits with a finite radial
extent. It is those models that we construct here.

The thin-orbit model has a distribution function of the form f = ftsm(Jφ ,Jν)δ (Jλ),
where Jλ is the radial action, Jφ = Lz is the azimuthal action, and Jν is the latitudinal
action. In this paper we write the distribution function in the (general) form f =
fgsm(Jφ,Jν)g(Jλ ,Jφ ,Jν), where g is a preassigned function, and we show how to find
fgsm, consistent with a given axisymmetric density ρ in an oblate Stäckel potential
V, by an iterative method, starting with the thin-orbit function ftsm as a first guess
for fgsm. We will consider functions g that are peaked in Jλ , so that the models will
be fairly close to the thin-orbit model, and few iterations are needed. The stability
analysis of these models will be discussed in Chapter 4.

Our method of specifying part of the distribution function, and solving for the
remainder, is not new, and was used for flat disks by Shu (1969). Bishop (1986)
applied it to oblate Stäckel models, starting from a different initial guess. Gerhard
(1991) and Gerhard & Dehnen (1993) have recently popularized this approach for
spherical and oblate models.

In Section 2 we define our notation, and present the construction method. A
detailed description is given in Section 3, where we also investigate what properties
of the assigned function g are important for convergence of the iterative scheme. We
illustrate the method by constructing a number of self-consistent Kuzmin-Kutuzov
models with thick tubes. In Section 4 we consider special and limiting cases for
which the algorithm simplifies, and where further insight in the method can be
gained by analytic means. Concluding remarks follow in Section 5.

2 Oblate galaxy models
We first summarize the basic properties of oblate Stäckel models, present the fun-
damental integral equation for their phase-space distribution functions, and then
outline an iterative scheme for its solution. Derivations and further information can
be found in dZ85, DZ, and ZH.

2.1 Orbits and integrals of motion

The motion in an oblate galaxy with a gravitational potential of Stäckel form is best
described in prolate spheroidal coordinates (λ ,ν,φ). These are related to standard
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cylindrical coordinates (R,z,φ) by

R2 =
(λ + α)(ν + α)

(α � γ )
, z2 =

(λ + γ )(ν + γ )
(γ � α)

, (2.1)

where α and γ are constants and the coordinates ν and λ lie in the range�γ � ν �
�α � λ . Surfaces of constant λ are prolate spheroids, while those of constant ν are
two-sheeted hyperboloids. The foci are located at z = �pγ � α . Each set of (λ ,ν,φ)
corresponds in general to two points (R, � z,φ). In these coordinates the potential
V(λ ,ν) takes the form:

V = �(λ + γ )G(λ )� (ν + γ )G(ν)
(λ � ν)

, (2.2)

where G(τ) is an arbitrary smooth function that determines the shape of the poten-
tial, and τ = λ ,ν.

The equations of motion separate in the (λ ,φ ,ν) coordinates. Since the potential
is axisymmetric, the momentum pφ conjugate to φ is constant, and equals Lz = R2φ̇ ,
the component of the angular momentum parallel to the z–axis. The motion in λ
and ν, i.e., in the meridional plane, is described by

p2
τ =

B(τ)
2(τ + α)2(τ + γ )

, (τ = λ ,ν), (2.3)

where
B(τ) = (τ + α)(τ + γ )E� (τ + γ )I2 � (τ + α)I3 �U(τ). (2.4)

and
U(τ) = �(τ + α)(τ + γ )G(τ). (2.5)

Here E is the total orbital energy, I2 = 1
2L2

z, and I3 is the third isolating integral of
motion given by (cf. eq. [2.13] of DZ)

I3 = 1
2(L2

x + L2
y) + (γ � α)[ 1

2v2
z � z2 G(λ )� G(ν)

λ � ν
]. (2.6)

Each set of values of E, I2 � 0 and I3 for which p2
λ � 0 and p2

ν � 0 in some range of
λ and ν, respectively, corresponds to an orbit. It is bound when E � 0. In this case
the function B(τ) generally has three zeroes for τ = ν0,λ1,λ2, and each orbit fills an
area in the meridional plane defined by

�γ � ν � ν0, λ1 � λ � λ2. (2.7)

Orbits of this shape are usually referred to as short-axis tubes.
The constants ν0,λ1,λ2 are functions of E,I2,I3, and are called the turning points of

the orbit. ZH have shown that the relations between the standard integrals (E,I2,I3)
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Figure 1. The three-dimensional volume
filled by a short-axis tube orbit in an oblate
Stäckel model. The thin solid lines are the inter-
sections of the prolate spheroidal coordinates
(λ ,φ,ν) in which the motion separates with the
equatorial plane z = 0 and with two merid-
ional planes (R,z) at φ = 0 and φ = π/2. The
dot indicates the location of the focus along the
positive z-axis. The orbital volume is bounded
by four prolate spheroidal coordinate surfaces:
the top and bottom surfaces are parts of hyper-
boloids of revolution, labelled by the turning
point ν0, while the inner and outer boundaries
are spheroids of revolution labelled by the turn-
ing points λ1 and λ2.

and (ν0,λ1,λ2) can be written as

E = U[ν0,λ1,λ2],

I2 =
(�α � ν0)(λ1 + α)(λ2 + α)

γ � α
U[�α ,ν0,λ1,λ2],

I3 =
(ν0 + γ )(λ1 + γ )(λ2 + γ )

γ � α
U[�γ ,ν0,λ1,λ2],

(2.8)

where the square brackets indicate divided differences of the function U(τ) defined in
equation (2.5). These are defined iteratively by

U[τ1,τ2] =
U(τ1)�U(τ2)

τ1 � τ2
, (2.9a)

and

U[τ1,τ2,...,τn] =
U[τ1,τ3,...,τn]�U[τ2,τ3,...,τn]

τ1 � τ2
. (2.9b)

The ordering of the arguments is not significant. With this notation the function
B(τ) of equation (2.4) becomes

B(τ; ν0,λ1,λ2) = (τ � ν0)(τ � λ1)(λ2 � τ)U[τ,ν0,λ1,λ2]. (2.10)

Centrally concentrated models have U���(τ) > 0 for τ � �γ . This guarantees that
all third order divided differences U[τ1,τ2,τ3,τ4] are strictly positive (Hunter & de
Zeeuw 1992), so that B(τ) has no more than three zeroes: all orbits are short–axis
tubes.
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The three action integrals Jτ = (2π)�1 H pτdτ can be written as follows:

Jλ =

p
2
π

λ2Z
λ1

s
B(λ ; ν0,λ1,λ2)

λ + γ
dλ

λ + α
,

Jφ = Lz =

s
�2B(�α ; ν0,λ1,λ2)

γ � α
,

Jν =
p

2
π

ν0Z
�γ

s
B(ν; ν0,λ1,λ2)

ν + γ
dν

(�α � ν)
.

(2.11)

The integrals for Jλ and Jν generally need to be evaluated numerically.

2.2 Distribution functions

The fundamental integral equation for the phase-space distribution function
fsm(λ ,ν,vλ ,vφ ,vν) that gives rise to a density ρm(λ ,ν) in a gravitational potential
V(λ ,ν) is

ρm(λ ,ν) =
Z Z Z

fsm(λ ,ν,vλ ,vφ ,vν) dvλdvφdvν. (2.12)

Because V is here of Stäckel form, each orbit has three exact isolating integrals of
motion, so that Jeans’ theorem is valid: fsm is a function of the three integrals of mo-
tion, so we can consider fsm = fsm(E,I2,I3), or fsm = fsm(ν0,λ1,λ2), or fsm = fsm(Jλ ,Jφ ,Jν).
In each case, transformation of dvλdvφdvν to dEdI2dI3 etc., with the appropriate Ja-
cobian determinant, gives the relevant form of the fundamental integral equation
(2.12). DZ (eq. [3.2]) write (2.12) in terms of E,I2,I3), while ZH discuss its forms in
terms of the turning points (ν0,λ1,λ2) and the actions (Jλ ,Jφ ,Jν) (their eqs [2.23] and
[2.47]).

Since fsm is a function of three arguments, and ρm depends on only two variables,
many different fsm’s will be consistent with the same ρm, so that equation (2.12)
has many solutions. Two of these are readily available. The first is the special
model with fsm = fsm(E,Lz), in which the orbits are populated such that there is
no net dependence on the third integral. Its distribution function can be found
by application of the Hunter & Qian (1993) method, which requires (numerical)
evaluation of a contour integral. The second is the so–called thin-orbit model, in
which the stars occupy only the short axis tubes that have no λ–excursion, and
hence lie on prolate spheroidal shells. In this case fsm = ftsm(Jφ ,Jν)δ (Jλ). Bishop
(1987) and ZH have shown that ftsm can be found by a single real quadrature.

We are interested in distribution functions that populate not only the thin orbits,
but also those with a finite λ -extent. Instead of the turning points λ1 and λ2, we
employ the quantities

λm = 1
2(λ1 + λ2), ε = 1

2(λ2 � λ1). (2.13)
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Figure 2. Integration areas for the fundamental integral equation. a) In the (ε,λm)-plane, defined
in equation (2.13). b) In the (s,t)-plane, defined in equations (3.2) and (3.9). The light shaded regions
indicate the full integration areas: all orbits with inner and outer λ -turning points that correspond
to values of (ε,λm) or (s,t) in these areas contribute density on the spheroidal shell with coordinate
λ in configuration space. The specific choice (3.6) for the function gsm only populates orbits up to a
maximum relative thickness smax, so that the integration over s runs between 0 and smax, as indicated
by the dark shaded regions. The thin-orbit model has smax = 0, so that the integration areas shrink
to a point, indicated by the filled squares.

Here ε � 0 controls the ‘thickness’ of the short-axis tube, and λm indicates its mean
location in the radial direction (Figure 1). When ε = 0 the two radial turning points
λ1 and λ2 coincide, so that the ‘radial’ action Jλ = 0, and the orbit is a thin short-axis
tube. The relations between the standard integrals (E,I2,I3) and (ν0,λm,ε) follow
from equation (2.8), upon substitution of λ1 = λm � ε , λ2 = λm + ε .

With the definitions (2.13), equation (2.23) of ZH can be transformed to the
fundamental integral equation in terms of the three integrals ν0,λm,ε :

ρm(λ ,ν) = 4
p

2
�αZ
ν

dν0

�Z
1
2 (λ+α)

dλm

λm+αZ
jλ�λmj

dε
U*(λ ,ν; ν0,λ1,λ2)p

(ν0 � ν)(�α � ν0)(λ � ν0)

� ε[(λm � ν0)2 � ε2]fsm(ν0,λm,ε)q
[(λm � ν)2 � ε2][(λm + α)2 � ε2][ε2 � (λ � λm)2]

,

(2.14)
where

U* =
U[ν0,λ1,λ1,λ2]U[ν0,λ1,λ2,λ2]U[ν0,ν0,λ1,λ2]p
U[ν0,λ1,λ ,λ2]U[ν,ν0,λ1,λ2]U[ν0, � α ,λ1,λ2]

(2.15)

and we still have to substitute λ1 = λm � ε , λ2 = λm + ε . The area of integration in
the (λm,ε) plane is illustrated in Figure 2a.
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2.3 Iterative scheme

Our aim is to construct distribution functions fsm(ν0,λm,ε) that also populate or-
bits with non-zero thickness ε > 0. In the spirit of Bishop (1986), we resolve the
distribution function fsm as the following product

fsm(ν0,λm,ε) = fgsm(ν0,λm)g̃sm(ν0,λm,ε), (2.16)

where g̃sm gives the distribution of the radial excursions ε of the orbits, which
may depend on the values of the latitudinal turning points ν0 and the mean radial
positions λm. Writing fsm in this way does not imply any restrictions; all distribution
functions can be split up as in (2.16). If we specify g̃sm, and substitute the result in
equation (2.14), we are left with an integral equation for fgsm(ν0,λm). The choice of
g̃sm determines what function will be found.

We choose to normalize the function g̃sm such that
�Z
0

g̃sm(ν0,λm,ε) dJλ = 1, (2.17)

for fixed (ν0,λm). It then follows that when g̃sm = δ (Jλ ), the function fgsm is identical
to ftsm, the thin orbit distribution function of Bishop (1987) and ZH. It is given by

ftsm(λm,ν0) =
1

8π2
q
λm + γ (λm � ν0)U[ν0,λm,λm,λm]

h
(λm + α)ρ(λm,� α)�

q
(�α � ν0)U[ν0, � α ,λm,λm]

�αZ
ν0

[∂(λm � σ)ρ(λm,σ)/∂σ]dσp
(σ � ν0)U[σ,ν0,λm,λm]

i
,

(2.18)

where ρ equals ρm, the model density. The divided differences of U are always
derived from the model potential V, but the above expression gives ftsm for any
axisymmetric density ρ in the potential V(λ ,ν).

When the function g̃sm is sharply peaked near ε = 0 (i.e., near Jλ = 0), the solution
fgsm of (2.14) should be very similar to the thin orbit function ftsm. This suggests the
following approach. We start with the zeroth-order distribution function

f0(ν0,λm,ε) = ftsmfρmgg̃sm(ν0,λm,ε), (2.19)

where ftsmfρmg is short-hand for the thin-orbit function ftsm(ν0,λm) that follows from
equation (2.18) upon substitution of ρ = ρm. Since g̃sm is not the delta function in Jλ
that is appropriate for ftsmfρmg, the residual density

ρ1 = ρm �
Z Z Z

ftsmfρmgg̃sm(ν0,λm,ε) d3v, (2.20)

does not vanish everywhere, although we expect it to be much smaller than ρm. We
have fgsm = f0 + fc, where fc is the solution of

ρ1 =
Z Z Z

fc(ν0,λm)g̃sm(ν0,λm,ε) d3v. (2.21)
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This is the same integral equation as (2.14), but now for the densityρ1 in the potential
V(λ ,ν). For sharply-peaked g̃sm we approximate fc by f1 = ftsmfρ1g. Taking as first
order approximation fgsm = ftsmfρmg + ftsmfρ1g then leads to a residual density ρ2,
which should be smaller than ρ1. We can repeat this process as many times as we
want, which leads to the following algorithm:

fgsm(ν0,λm) =
nX

i=0
ftsmfρig, (2.22)

where
ρ0 = ρm(λ ,ν),

ρi+1 = ρi �
Z Z Z

ftsmfρigg̃sm d3v, (i = 1, � � � ,n).
(2.23)

If the residual densities ρi decrease with increasing i, the series (2.22) will provide an
increasingly better approximation to the actual distribution function. If this process
converges, we still have to check that the resulting fgsm is non-negative everywhere.
If it is not, it is not a physical distribution function, and another choice needs to be
made for g̃sm.

When g̃sm is sharply peaked, the zeroth order approximation (2.19) may already
be adequate. Shu (1969) used it to construct self-consistent flat circular disks with
nearly circular orbits. For less sharply peaked functions the iterative scheme (2.22)–
(2.23) should work very well. However, as the thickness of the populated orbits
increases, the density residuals ρi will become larger and it is not clear a priori
whether the algorithm will converge. We have implemented the algorithm, and
have constructed a number of models. It turns out that convergence is reached
easily for models with quite ‘fat’ orbits ε � 0.7(λm + α), but that the number of
required iterations increases strongly for broad g̃sm functions. The algorithm is
described in detail in Section 3.

2.4 Kuzmin-Kutuzov mass models

We illustrate our method by applying it to the construction of self-consistent models
with potential

V(λ ,ν) = � GMp
λ +

p
ν

, (2.24)

and associated density

ρm(λ ,ν) =
Mγ
4π

α(λ + 3
p
λν + ν)� λν

(λν)3/2(
p
λ +

p
ν)3

. (2.25)

This mass model was introduced by Kuzmin (1956) and connects Kuzmin’s (1953)
flat circular disk (γ = 0) with Hénon’s (1959) spherical isochrone (γ = α). The
surfaces of constant density are smooth and nearly oblate spheroidal with an axis
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Figure 3. The distribution function ftsm(λm,ν0) for an E5 Kuzmin-Kutuzov model with α = �1
and γ = �0.25. The thick solid curves are contours spaced logarithmically at intervals of 2. The focal
corner lies at λm = ν0 = 1. See also Figure 2 of ZH.

ratio �
q
γ /α , and become slightly less flattened at large radii. Kuzmin & Kutuzov

(1962) showed that the distribution function fsm(E,Lz) could be found as a series
expansion in powers of E and Lz. Many properties of these Kuzmin-Kutuzov
models were described by DZ, who also derived a closed form for fsm(E,Lz), albeit
with a typographical error (see Batsleer & Dejonghe 1993). ZH showed that the
thin-orbit distribution function fsm = ftsm(ν0,λm)δ (Jλ) (Figure 3) can be given in
terms of elementary functions, and discussed its properties in detail.

3 Description of the method
We first discuss a practical way to choose the function g̃sm, introduce more con-
venient variables, and show that the convergence of the iterative scheme depends
mostly on the moments of g̃sm. Then we show how kinematic properties of the mod-
els can be calculated with little extra effort, and we briefly describe the numerical
implementation.

3.1 Normalization of g̃sm: the function gsm

The normalization of g̃sm is to some extent arbitrary, as is the factorization (2.16) of
the distribution function. All we require is that g̃sm is normalized such that in the
limit of thin orbits only, we recover ftsm. The most natural normalization is to take the
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condition (2.17), but at constant values of the actions (Jφ ,Jν) rather than at constant
values of the integrals (ν0,λm). However, the transformation (ν0,λm,ε) � (Jλ ,Jφ ,Jν)
generally requires numerical inversion, so that in fact both these normalizations are
not very practical. We therefore work with a function gsm(ν0,λm,s) defined by

g̃sm(ν0,λm,ε) =
cg(ν0,λm)

(λm + α)
p
λm � ν0

gsm(ν0,λm,s), (3.1)

where
s =

ε
λm + α

, (3.2)

so that s is an integral of motion which gives the relative thickness of the orbit, and
0 � s � 1. We require that

1Z
0

gsm(ν0,λm,s) ds2 = 1, (3.3)

at fixed ν0 and λm. By comparison of equations (3.3) and (2.17) it then follows that

cg(ν0,λm) =
(λm + α)

p
λm � ν0Z 1

0
ds2 gsm(ν0,λm,s)j∂Jλ /∂s2j(ν0,λm)

, (3.4)

which therefore depends on the choice of gsm. The partial derivative of Jλ can be
written as a single quadrature, and is given in Appendix A. It is even in s, and hence
a function of s2.

We have not incorporated the factor (λm + α)
p
λm � ν0 in the definition of cg,

because it diverges on orbits with λm = ν0 = �α , i.e., on the oscillations along the
z-axis that just reach the foci of the spheroidal coordinates. We will come back to
the behaviour of the algorithm near the foci in Section 4.2. In the limit g̃sm = δ (Jλ),
so that only thin orbits are populated, we have s = 0, gsm(s) = δ (s2), and

cg(ν0,λm) =

q
2(λm + γ )p

U[ν0,λm,λm,λm]
. (3.5)

This is well-behaved for all physical values of �γ � ν0 � �α � λm.

3.2 Choice of gsm; moments

Any distribution function fsm can be written as fgsmcggsm. As an example, Figure
4 shows both the factor fgsmcg and the factor gsm for the two-integral Kuzmin-
Kutuzov model with fsm(E,Lz). Both factors vary smoothly, but the function gsm
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Figure 4. The distribution function fsm(E,L2
z) for an E5 Kuzmin-Kutuzov model with α = �4/9

and γ = �1/9. The surface is the fgsm part, which includes the normalizationsfactor cg. The thick solid
curves are contours spaced logarithmically at intervals of 2. The focal corner lies at λm = ν0 = 4/9.
The small diagrams in the upper half show the behaviour of gsm as a function of s, on the interval
[0,1].

shows a range of behaviour as a function of s2, depending on the values of λm,ν0.
In this chapter we consider functions gsm that are even in s, and are of the form

gsm(s) =

���
��

q+1
s2

max
(1� s2

s2
max

)q for 0 � s � smax,

0 for s � smax,
(3.6)

with q > �1 and 0 � smax � 1. These functions are all normalized as in equation
(3.3), and show a similar range of shapes as seen in Figure 4. In principle, we can
choose the maximum relative thickness smax to be a function of ν0 and λm, but we
do not do so here, and from now on we suppress the dependence of gsm on ν0 and
λm in the expressions that follow. Figure 5 illustrates the cases q = 0,1,2.

We define the moments hs2ngsmi of gsm by

hs2ngsmi =
1
n!

1Z
0

s2ngsm(s) ds2, (3.7)

for n = 0,1, � � �. It follows that hgsmi = hs0gsmi = 1, by the normalization (3.3). The
higher moments can be given explicitly for the choice (3.6):

hs2ngsmi =
Γ(q + 2)

Γ(n + q + 2)
s2n

max. (3.8)
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Figure 5. Three different functions gsm of
the form (3.6) with q = 0 (solid line), q = 1
(dotted line), q = 2 (dashed line). They are
normalized with respect to s2 (see eq. [3.3]).

When smax � 0, we have gsm(s) = δ (s2), and all higher order moments vanish.
When 0 < smax � 1, the higher moments decrease very rapidly with increasing n.

3.3 New variables

The fundamental integral equation appears in our iterative scheme in the form
(2.23). We transform it to a more useful form by means of an alternative set of
variables. In addition to the relative orbital thickness s, defined in equation (3.2),
we introduce

t =
λ � λm

λm + α
, u =

�α � ν0

�α � ν
, x =

�α � ν
λ � ν

, (3.9)

so that 0 � t, 0 � u, and 0 � x � 1. These definitions mix the turning point variables
(ν0,λm) with the coordinates (λ ,ν), but they facilitate the analysis of the fundamental
integral equation. Carrying out the substitutions (3.9), and rearranging various
terms results in

ρi+1 = ρi �
1Z

0

du w1(u)
s2

maxZ
0

ds2gsm(s)
sZ

�s

dt
w2(s,t,u)p

s2 � t2
ftsmfρig, (3.10)

where we have written

w1 =
4
p

2p
u(1� u)(1� x + xu)

,

w2 =
[[1� x + xu(1 + t)]2 � (1� x)2s2]p

(1 + tx)2 � (1� x)2s2
p

1� x + xu(1 + t)
U*(s,t,u)cg(t,u)

(1 + t)3/2
p

1� s2
,

(3.11)

and cg and U* are defined in equations (3.4) and (2.15), respectively. The thin orbit
function ftsmfρig is defined in equation (2.18), and is independent of s. Both w1 and
w2 depend also on the coordinates λ and ν, but we suppress them as arguments
because they are not integration variables. The square root of s2 � t2 vanishes at
s = t = 0, which lies in the area of integration (Figure 2b). For this reason we have
not incorporated it in the definition of w2. Finally we remark that w2 is an even
function of s, and hence depends on s2.
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3.4 Convergence

When smax � 1, the function gsm is sharply peaked, and it is useful to expand it in a
series of derivatives of delta functions (e.g., Fridman & Polyachenko 1984, p. 150):

gsm(s) =
�X

n=0
(�1)nhs2ngsmiδ (n)(s2), (3.12)

where the hs2ngsmi 	 s2n
max are the moments of gsm defined in equation (3.7), and δ(n)

is the nth derivative of the delta function, which satisfies the relation

+Z
�

δ (n)(x)h(x) dx = (�1)nh(n)(0). (3.13)

We use this expansion to show that the convergence of our iterative scheme depends
mostly on the moments of gsm, and less on its detailed functional behaviour.

Substitution of (3.12) in equation (3.10) gives

ρi+1 = ρi �
1Z

0

du w1(u)
�X

n=0
hs2ngsmid

nW2(0,u)
d(s2)n , (3.14)

where we have written the t-integral as

W2(s,u) =
sZ

�s

dt
w2(s,t,u)p

s2 � t2
ftsmfρig, (3.15)

and we have used the definition (3.13) to carry out the s-integration. The first
term in the series expansion for gsm is δ (s2). Its contribution to the right hand side
of equation (3.14) equals �ρi. Upon substitution of the specific form (3.8) for the
moments, we are therefore left with

ρi+1 = �
�X

n=1

Γ(q + 2)
Γ(n + q + 2)

s2n
max

1Z
0

du w1(u)
dnW2(0,u)

d(s2)n . (3.16)

This is valid for all functions gsm of the form (3.6) with smax < 1.
Since 0 � t � s � smax, it follows that both s and t are small when gsm is sharply

peaked. The functions w2(s,t,u) and ftsmfρig then vary little over the integration
area, and so does W2(s,u). Its derivatives with respect to s2 are finite at s = 0. Since
W2 contains the thin orbit function ftsmfρig as a factor, and since this is independent
of s and proportional to ρi, it follows that all the derivatives of W2 are similarly
proportional to ρi.

For small smax, the first term in the series on the right hand side of equation (3.16)
dominates. This means that the residual density ρi+1 is roughly proportional to the
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residual ρi times the first moment of the function gsm. Since this is proportional to
s2

max, this shows why even for moderately peaked functions our iterative scheme
converges rapidly. It furthermore shows that the shape of gsm is less important
than its moments. We can vary the shape of gsm without significantly affecting the
residual density, as long as we do not dramatically change the lowest order moments
of gsm. Since ftsmfρig is derived from these residuals, the solutions fgsm(λm,ν0) that
correspond to different gsm will be rather similar as long as the first moments of
these gsm functions are the same.

We found that even for very broad gsm functions the iterative scheme performed
well. Figure 6 shows the density residuals in the construction of an E5 Kuzmin-
Kutuzov model with q = 2 and s2max = 0.9. The computation was continued until
jρi/ρmj < 10�3, which occurred after five iterative steps. Even for this ‘fat’ model
the residuals decrease rapidly. The resulting fgsm is also shown, compared to the
thin-orbit distribution function ftsm.

3.5 Velocity moments

When a distribution function fsm = fgsmcggsm for a given density ρm in a potential
V has been found, we are most often also interested in the observable kinematical
properties of the resulting dynamical model. These follow by taking the appropriate
velocity moments of fsm, followed by a line-of-sight integration. It turns out that
the intrinsic velocity moments can be found easily by a slight extension of our
algorithm.

The intrinsic velocity moments are defined as

ρmhvi
λvj

φvk
νi =

Z Z Z
vi
λvj

φvk
νfsm dvλdvφdvν, (3.17)

The expressions for the velocity components at a point (λ ,ν) along an orbit with
turning points (ν0,λ1,λ2) are given in equation (3.2) of ZH. Upon transformation to
our variables (s,t,u,x) we find

v2
λ = 2(λ + α)

(1� x + xu)
(1 + t)2 (s2 � t2)U[λ ,λ1,λ2,ν0],

v2
φ = 2(λ + α)

u(1� s2)
(1 + t)2 U[�α ,λ1,λ2,ν0],

v2
ν = 2(λ � ν)

(1 + xt)2 � (1� x)2s2

(1 + t)2 (1� u)U[ν,λ1,λ2,ν0].

(3.18)

Hence, if we insert vi
λvj

φvk
ν in our equation (3.10), after use of the transformation

(3.18), we find the contribution to the required moment. Since the U-functions
occur in U*, they have already been evaluated, so calculating the velocity moments
in parallel with carrying out the iteration to get fsm adds very little to the required
CPU time.
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ρ1/ρm ρ2/ρm

ρ3/ρm ρ4/ρm

ρ5/ρm fgsm/ftsm

Figure 6. Successive steps of the iterative scheme to obtain fgsm for an E5 Kuzmin-Kutuzov
model with α = �1,γ = �0.25, and a function gsm with parameters q = 2 and s2

max = 0.9. Shown is
the residual density ρi/ρm for each step. The bottom right plot shows the ratio of the resulting fgsm
(after five iterations) and ftsm.
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Figure 7. The intrinsic velocity moments for the E5 Kuzmin-Kutuzov thin-orbit model (solid)
and q = 0 models with smax = 0.5 (dotted) and 0.7 (dashed lines).

As an example, we have constructed two E5 Kuzmin-Kutuzov model with q = 0
and s2

max = 0.5 and 0.7, respectively. In five iterations the residual density is less
than 10�3ρm. The velocity moments are shown in Figure 7 (cf. Figures 5 and 7
in ZH). As expected, the dispersion in the ν- and φ-directions decrease while the
‘radial’ dispersion increases. The s2max = 0.7 model has the largest ratio of hv2

λ i/hv2
φi,

which is of the order of 0.25.

3.6 Numerical implementation

We have written a code to implement the iterative scheme defined in equations (2.22)
and (2.23). The density residuals and the terms in the series for fgsm are calculated
on a (λ ,ν) grid that doubles as a (λm,ν0) grid. The quantities are interpolated using
splines as their values are also needed in between mesh points to evaluate the s– and
t–integrals. The actual integrations are carried out using Romberg integration after
switching to more appropriate integration variables instead of s and u to remove
the square roots from the denominators.

The (λ ,ν) grid points have to be chosen with some care. We need to cover the full
λ domain in order to prevent boundary errors in the determination of the residual
density. This is accomplished by using a grid that is linear in the variable tλ defined
by

λ (tλ ) + α = (λH + α)
(2tλ )p

(2� 2tλ )q , 0 < tλ < 1, (3.19)
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where λH is the value of λ in the middle of the grid, p determines the resolution
near λ = �α and q is chosen to match the large-radii behaviour of the distribution
function. Most of the computations in this paper were done using p = 3, q = 0.25
and λH = 4.

When the model is very flattened towards the equatorial plane, its associated
prolate spheroidal coordinate system is very elongated along the z-axis. The net
effect of this opposite elongation is that the density and distribution function are
sharply peaked near ν = �γ . We therefore use a ν–grid that is linear in the variable
uν, where

ν(uν) + γ = A
h (1 + uν)p

B + (1 + uν)p�1 �
1

B + 1

i
. (3.20)

for some p � 1; B is set to (7
4)p�1. The parameter A is determined so that ν(1) = �α .

We have found this substitution to be adequate for models as flattened as E7.
The thin-orbit distribution function is computed from the density residuals

using (2.18). A straightforward implementation of (3.10) is feasible, but a single
iteration step on a (λ ,ν) grid of 50x50 would take about 100 minutes CPU time on
an HP735. There is a faster way to implement the algorithm. The only part of the
integral in (3.10) that changes in successive iterations is the ftsmfρig factor, which
does not depend on s. We therefore exchange the order of integration, and carry
out the s-integral first. It is

Tg(t,u,x) =
s2

maxZ
t2

ds2 w2(s,t,u)gsm(s)p
s2 � t2

, (3.21)

and can be tabulated before the first iteration. Using a 81x27x100 grid for (t,u,x), the
initialization stage takes 5 minutes CPU time, or 10 minutes if the velocity moments
have to be computed as well. Each iteration step then simplifies to

ρi+1 = ρi �
1Z

0

du w1(u)
smaxZ

�smax

dt Tg(t,u,x)ftsmfρig, (3.22)

which takes about 1 CPU minute to complete. The program is written in Fortran.
The number of iteration steps to reach a relative accuracy better than 10�3 is 1 for
smax = 0.1, 3 for smax = 0.5 and 5 for smax = 0.7 in the case of q = 0 models. It is
smaller when q > 0.

There is a further reduction possible in the limiting cases of a spherical or a disk
galaxy. These are described in Sections 4.4 and 4.5, respectively.

4 Special cases
Approximate solutions of the fundamental integral equation (3.10) can be found by
analytic means at large radii, and near the foci of the spheroidal coordinates. We
consider them in turn, and then show how the scheme simplifies for models with
sharply peaked gsm functions, and in the spherical and disk limits.
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4.1 Large radii

The relation (3.10) for the density residuals simplifies considerably in the limit of
large radii, i.e., λ �
 so that x � 0. The functions w1 and w2 then reduce to

w1(u) =
4
p

2p
u(1� u)

,

w2(s,t,u) =
U*(s,t,u)cg(t,u)

(1 + t)3/2 .

(4.1)

In order to evaluate the various third-order divided differences that appear in the
definitions (2.15) and (3.4) for U* and cg, respectively, we assume that smax < 1, so
that the orbits that contribute to the density at (λ ,ν) have λ2 � λ � λ1 = λm(1� s) �
λm(1 � smax) � �α . The details of the calculations are given in Appendix B. We
find that in this case neither U* nor cg depend on u at large λ , and that

U*cg � GM
25/2Cg

(1 + t)
λ

L(s,t), (4.2)

where L(s,t) is the elementary function given in equation (B4), and the constant
Cg � 1 is defined in equation (B10). Cg = 1 in the thin orbit limit gsm = δ (s2).

We consider a flattened density ρi that falls off as a power of λ at large radii:

ρi(λ ,ν) � ρνi (ν)
λp , (4.3)

for some (positive) value of p. Selfconsistent models with finite total mass must
have p > 3/2. By Kuzmin’s formula, such models must also have p � 2 (e.g., de
Zeeuw, Peletier & Franx 1986). Non-consistent densities ρm may fall off steeper
than this. Substitution of the form (4.3) in expression (2.18) for ftsmfρig and use of
the approximations (B1) then shows that ftsm 	 λ1�p

m times a function of ν0 (cf ZH,
eq. [2.56]). Transformation to the variables (s,t,u) gives

ftsmfρig � (1 + t)p�1

λp�1
fνtsm(u)
π2GM

, (4.4)

where

fνtsm =
h
ρνi (�α) +

p
u

uZ
0

[dρνi (u�)/du�]du�p
u� u�

i
. (4.5)

Thus, at large radii the thin orbit distribution function becomes a product of a
function of t and a function of u.

Substitution of all the above approximations in the basic relation (3.10) shows
that for λ � �α the triple integration over s,t and u reduces to the product of an
integral over u times a double integral over s and t:

ρi+1 � ρi �
Lg(p)
πCg

1
λp

1Z
0

du fνtsm(u)p
u(1� u)

, (4.6)
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Figure 8. Limiting behaviour at large radii of various properties of models with a density fall-off
ρm � 1/λ 2, and functions gsm with q = 0 (solid), 1 (dotted), and 2 (dashed), and values of smax between
0 and 1. Here λ � r2, and fgsm becomes a constant factor Cg/Lg(2) times the thin-orbit distribution
function ftsm (see eq. [4.9]). Shown are, as a function of smax: a) the factor Cg/Lg(2), b) the intrinsic
mean streaming motion hvφ i in units of the maximum possible streaming hvφitsm, assuming all stars
have the same sense of rotation around the symmetry axis, c) the second moment hv2

λ i of the ‘radial’
velocity, in units of GM/

p
λ , and d) the second moments hv2

φi and hv2
νi in units of their values in the

thin-orbit model. These results are valid for λm(1� smax) � �α.

where we have defined

Lg(p) =
1
π

s2
maxZ

0

ds2gsm(s)
sZ

�s

dt L(s,t)

(1 + t)
3
2�pps2 � t2

. (4.7)

The u-integration in equation (4.6) can be carried out, and equals πρνi (ν). Since Lg(p)
is a constant, it follows that the triple integration over ftsmfρig is proportional to
ρνi (ν)/λ p, i.e., it is proportional to ρi itself:

ρi+1 � ρi
h
1� Lg(p)

Cg

i
. (4.8)
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Thus, the residual density at large radii becomes smaller by a constant factor [1�
Lg(p)/Cg] at each iteration step,

In the thin orbit limit gsm = δ (s2), and we have Cg = Lg(p) = 1, so that ρi+1 = 0 for
all i. This is as it should be, since fgsm equals ftsmfρmg exactly in this case. Equation
(4.8) implies that for broadened functions gsm the distribution function fgsm at large
values of λm is given by

fgsm(ν0,λm) � Cg

Lg(p)
ftsmfρmg, (λm ��α), (4.9)

so that we can find it without iteration.
The values of the constants Cg and Lg(p) can be found by numerical evaluation

of the integrals (B10) and (4.7). For sharply peaked gsm they can be approximated
by expanding the integrands in powers of s2, and evaluating term by term. This
gives

Cg � 1 + hs2gsmi + 501
256hs4gsmi + O(hs6gsmi),

Lg(p) � 1 + ( 25
16 � 7

8p + 1
4p2)hs2gsmi + (1005

128 � 471
128p + 227

128p2 � 11
32p3 + 1

32p4)hs4gsmi
+ O(hs6gsmi),

(4.10)
so that

ρi+1 � ρi[( 9
16� 7

8p+ 1
4p2)hs2gsmi+(45

32 � 359
128p+ 195

128p2� 11
32p3 + 1

32p4)hs4gsmi+ � � �]. (4.11)

This shows again that for sharply peaked gsm its first moment is mostly responsible
for the convergence of the iterative scheme.

In a similar fashion it is possible to derive approximations for the intrinsic
velocity moments. Substituting approximations (B1) in (3.18), we find that the
velocities can be written as a

v2
τ =

GMp
λ

�τ(u)Lτ
v(s,t), (τ = λ ,ν,φ), (4.12)

where Lτ
v is given in (B12), and �τ = 1,(1�u),u for τ = λ ,ν,φ , respectively. Substitution

of (4.12) and (4.9) in (3.17) yields

ρmhvn
τ i =

Lτn
gv

Lg(p)
1

πλp

�GMp
λ

�n/2
1Z

0

du fνtsm(u)�τ(u)p
u(1� u)

, (4.13)

where we have introduced

Lτn
gv(p) ==

1
π

s2
maxZ

0

ds2gsm(s)
sZ

�s

dt Lτ
v(s,t)

n
2 L(s,t)

(1 + t)
3
2�pps2 � t2

. (4.14)
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Again, the u-integration can be carried out. Since Lτv(0,0) = 1 for τ = ν,φ , the
u-integral equals ρmhvn

νitsm and ρmhvn
φitsm, respectively, which are the velocity mo-

ments of the thin-orbit model. For τ = λ the u-integral equals ρm, hence

hvn
τ i = hvn

τ itsm
Lτn

gv(p)
Lg(p)

, (τ = ν,φ),

hvn
λ i =

�GMp
λ

�n/2 Lλn
gv (p)

Lg(p)
.

(4.15)

For sharply peaked gsm functions the dispersions and rotation velocity can therefore
be approximated by

hvφi � hvφitsm[1 + ( 3
64 � 1

8p)hs2gsmi( 993
8192 � 175

512p + 7
128p2)hs4gsmi + � � �];

hv2
λ i � GMp

λ
[ 1

8hs2gsmi + ( 67
128 � 1

8p)hs4gsmi + � � �];

hv2
νi � hv2

νitsm[1 + (�9
8 + 3

4p)hs2gsmi(�531
128 � 215

64 p� 3
8p2)hs4gsmi + � � �];

hv2
φi � hv2

φitsm[1 + (1
8 � 1

4p)hs2gsmi + ( 41
128 � 45

64p + 1
8p2)hs4gsmi + � � �].

(4.16)

Figure 8 illustrates the behaviour of Cg/Lg(p) for our choice of gsm, for p = 2. It also
shows intrinsic velocity dispersions and rotational velocity in terms of the thin-orbit
values. The above results show that for a given density distribution ρm(λ ,ν), and
with gsm a function of s only, the kinematic properties at large radii do depend on
λ and ν, but they follow from those in the thin orbit model by multiplication with
a factor wich depends on gsm and p only.

Equation (4.8) shows that our iterative scheme will converge for any gsm for
which 0 � Lg(p)/Cg < 2. A useful upper limit for Lg(p)/Cg can be obtained by
evaluating

max
0�s�smax

1
πh(s)

sZ
�s

dt L(s,t)

(1 + t)
3
2�pps2 � t2

. (4.17)

It is easily verified by numerical integration of (4.17) that Lg/Cg < 2 as long as
p < 9/2. This includes all physically relevant cases, so our iterative scheme will
always converge at large radii for all gsm functions.

4.2 Behaviour near the foci

We now investigate the behaviour of the iterative scheme near the foci of the
spheroidal coordinates, where λ = ν = �α . The variables s,t,u and x that ap-
pear in the basic relation (3.10) for the density residuals take their full range of
values near the foci, but the triple integration over s,t and u can nevertheless be
simplified, because the factors ftsmfρig(t,u), U*(s,t,u), and cg(t,u) which appear in
the integrand, all simplify.
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The only orbits that contribute density at the foci in the thin-orbit model are
those with λm = ν0 = �α . Orbits with λm > �α lie on spheroidal shells which
intersect the z-axis above the foci, while orbits with λm = �α and ν0 < �α are z-axis
oscillations that do not reach the foci. It follows that ρm(�α , � α) is determined
exclusively by ftsmfρmg(�α ,� α). The relation is (see ZH, eq. [2.44])

ftsmfρmg(�α ,� α) =
ρm(�α ,� α) [1 + x0]

8π2pγ � αU[�α ,� α , � α , � α]
, (4.18)

where

x0 =
�α � ν0

λm � ν0
=

xu(1 + t)
1� x + xu(1 + t)

. (4.19)

and U[�α ,�α ,�α ,�α] = U���(�α) > 0. In the limit where λm = ν0 = �α , the value
of x0 can still lie anywhere between 0 and 1, so that the factor in square brackets
in equation (4.18) can take any value between 1 and 2, depending on the direction
along which the focal corner in the (λm,ν0)-plane is approached. ZH refer to this
property of ftsm by saying that it has radial behaviour in the focal corner (Figure 3,
and ZH Figure 2). Without this behaviour of ftsm it would not reproduce the correct
density ρm(�α ,� α).

Since the thin-orbit distribution function ftsmfρig is proportional to ρm(�α ,�α),
the residual density ρ1 depends only on the local behaviour of the distribution
function near the focal corner. This means that we can approximate U* in equation
(3.10) by the constant value [U���(�α)]3/2, so that it can be taken outside the triple
integration.

We show in Appendix C that near the focal corner the function cg can be ap-
proximated as

cg(ν0,λm) �
q

2(γ � α)p
U���(�α)

1
Jg(x0)

, (4.20)

where Jg(x0) is a weighted integral of the function gsm, defined in equation (C7). As
a result, cg also has radial behaviour near the focal corner, except in the thin-orbit
limit when Jg(x0)  1.

Upon substitution of these approximations in relation (3.10), we find

ρ1(�α ,� α) � ρm(�α ,� α)[1� Fg(x)], (4.21)

where

Fg(x) =
1
π2

1Z
0

dup
u(1�u)(1�x+xu)

s2
maxZ

0

ds2
p

1�s2

sZ
�s

dt
(1+t)3/2

gsm(s)p
s2 � t2

(1 + x0)
Jg(x0)

� [[1�x + xu(1 + t)]2� (1� x)2s2]p
(1+tx)2� (1�x)2s2

p
1�x + xu(1+t)

,

(4.22)
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and we still have to substitute relation (4.19) for x0 = x0(x,u,t). When gsm(s) = δ (s2)
the integration over t and s gives π since then Jg(x0)  1, and so does the remaining
integral over u, so that then Fg(x)  1 and the residual ρ1  0, as it should be for the
thin-orbit model. However, when gsm is not infinitely sharply peaked, the value of
ρ1 at the foci (λ = ν = �α) depends on the direction of approach, i.e., on the value
of x. Thus, the residual density has radial behaviour near the foci.

The triple integral (4.22) requires numerical evaluation for 0 < x < 1 and general
gsm. We have found it to be a slowly varying monotonic function of x for our choice
(3.6) of functions gsm(s) (see Figure 9). It is bounded by the values Fg(0) and Fg(1).
We show in Appendix D that the triple integration reduces to a single integral for
x = 0 and x = 1, and that the remaining integrals can be found explicitly for our set
of functions (3.6). By combining equations (C9) and (D6) we find, for q > 0:

Fg(0) = 2F1(3
4 ,5

4 ; 2 + q; s2
max)

2F1(1
4 ,3

4 ; 2 + q; s2
max)

,

Fg(1) = 2F1(1,1; 2 + q; s2
max)

2F1(1
2 ,1; 2 + q; s2

max)
,

(4.23)

while for q = 0 we have (cf. eqs [C10] and [D8])

Fg(0) =
3[K(k)� ((1 + smax)E(k)]

(1 + smax)[E(k)� (1� smax)K(k)]
,

Fg(1) = � (1 +
q

1� s2
max)

2s2
max

ln(1� s2
max),

(4.24)

where K and E are the complete elliptic integrals of the first and second kinds, and
k2 = 2smax/(1 + smax). For each q � 0 these functions increase monotonically with
increasing smax. In the limit smax � 1 each function reaches a finite value,

Fg(0) =
q + 3

4
q

, Fg(1) =
q + 1

2
q

, (4.25)

provided q > 0. However, Fg(0) and Fg(1) diverge logarithmically when q = 0
and smax � 1, although their ratio approaches 3/2, in agreement with the result
Fg(0)/Fg(1) � (q + 3

4)/(q + 1
2) which follows from equation (4.25). For given q and

smax the total relative variation of Fg(x) between x = 0 and x = 1 is therefore never
larger than 1.5. Figure 9 illustrates the behaviour of Fg(0) and Fg(1) as a function of
smax for q = 0,1 and 2.

The radial behaviour of the residual density ρ1 at the foci of the spheroidal
coordinates, and the fact that the distribution function fsm = fgsmg̃sm is determined
by the local density distribution when smax < 1, means that fgsm(ν0,λm) must have
radial behaviour near the focal corner ν0 = λm = �α , so that it must be of the form

fgsmfρmg(�α ,� α) = ftsmfρmg(�α ,� α)Kg(x0)

=
ρm(�α ,� α)(1 + x0)Kg(x0)

8π2pγ � α U���(�α)
,

(4.26)
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Figure 9. The behaviour of (1 + x0)/Fg(x0) for (a) q = 2, (b) q = 1 and (c) q = 0, as calculated with
our iterative scheme, for s2

max = 0, � � � ,0.9 in steps of 0.1. The factor 1/Fg(x0) decreases monotonically
with smax. At most 10 iterations were computed for each model, regardless of the achieved accuracy.
The scheme did not converge for the (q = 0,s2

max = 0.9) model. In (d) and (e) the results (crosses) from
(a)-(c) are compared to the analytical value for q = 0 (solid), 1 (dotted) and 2 (dashed) as a function
of smax. In (f) the lines Fg(1) = 2 (dotted) and Fg(0) = 2 (solid), which are in effect a relation between
q and smax, are plotted for our gsm functions. In the shaded area both Fg(0) < 2 and Fg(1) < 2, which
is an indicator for convergence of the iterative scheme.
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with Kg a function of the variable x0 defined in equation (4.19). Since x = 0 cor-
responds to x0 = 0, and since similarly x = 1 corresponds to x0 = 1, it follows
that

Kg(0) =
1

Fg(0)
, Kg(1) =

1
Fg(1)

. (4.27)

This suggests — but does not prove — that Kg(x0) has a modest variation with x0.
It can be computed as follows, at least in principle. We insert Kg(x0) as a factor in
the triple integral on the right-hand side of equation (4.22), and put the left-hand
side equal to 1 for 0 � x � 1. Transformation of the variables (u,t) to (x0,t) then
allows one to carry out the t and s-integrals. This leaves a one-dimensional integral
equation for the function Kg(x0). In practice this must be solved numerically, and it
is in fact easier to simply use our iterative scheme. We have applied it to compute
Kg(x0) for our functions gsm with q = 0,1 and smax = 0,0.3,0.5,0.7 and 0.9. The
resulting functions are shown in Figure 9a,b,c. They are very nearly linear up to
values of smax as large as 0.7. This means that to good approximation we can take

Kg(x0) � 1� x0

Fg(0)
+

x0

Fg(1)
, (4.28)

so that we can find the local behaviour of the distribution function near the focal
corner without iteration.

The results presented in Figure 9d,e also show that the jump in the value of fgsm
at the focal corner is a function of smax. The magnitude of the jump going from
x0 = 0 to x0 = 1 is 2Kg(1)/Kg(0) = 2Fg(0)/Fg(1), and hence varies from 2 when smax = 0
in the thin-orbit model to (2q + 3

2)/(q + 1
2) when smax � 1.

The convergence of the iterative scheme near the foci of the model can not be
derived by investigation of only the residual density ρ1, as we have done in the
above. However, equation (4.21) suggests that in cases where 0 � Fg(x) � 2 also the
higher order residuals jρij with i > 1 will decrease in size, so that the scheme very
likely will converge. This condition on Fg(x) is met for all our functions gsm when
q � 3/4, and is also met for a large range of smax when �1 < q < 3/4 (see Figure 9f).

The above results also hold when smax = 1 as long as q > 0. In this case there
are orbits with arbitrarily large outer turning point λ2 but low angular momentum
that still provide density at the foci, but their contribution is vanishingly small.
However, when q = 0 and smax = 1 this is no longer so, and our derivation of the
approximate relation (4.21) is invalid. The density close to the foci depends on the
details of the distribution of non-local orbits.

We remark that all self-consistent oblate models with density ρm in a potential
V of the form (2.2) have distribution functions with radial behaviour in the focal
corner, unless q � 0 and smax = 0. From our analysis it is not clear whether the radial
behaviour is still present in the latter case. However, the two-integral distribution
function fsm(E,Lz) is generally well-behaved at the focal corner (Figure 4). When
written in the form (2.16), it leads to a function gsm which does not depend on s
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(a) q = 0 (b) q = 1

(c) q = 2 (d) smax = 0.1

Figure 10. The function δ f/ftsm for an E5 Kuzmin-Kutuzov model as obtained from a model with
smax = 0.1 and (a) q = 0, (b) q = 1 and (c),(d) q = 2 (shaded surfaces). The difference of δ f/ftsm obtained
from (a)-(c) smax =

p
0.1 and smax = 0.1 and (d) q = 0 and q = 2 models are shown as wireframe

surfaces.

alone. At the focal corner it is identical to our q = 0, smax = 1 function, and along
ν0 = �α it has q < 0 behaviour. Our iterative scheme with ftsm as initial guess for
fgsm fails to converge in this case.

4.3 Models with peaked gsm functions

We have seen that the convergence of the iterative scheme is determined by the
moments of the gsm function. For models with sharply peaked gsm functions only
the first moment is significant; higher moments can be neglected. In this case only
a single iteration is required to approximate fgsm to high accuracy.

The expression for the residual density ρ1 simplifies considerably. Since jtj �
s � smax and smax is small, the w2(s,t,u) function in (3.10) can be expanded in a Taylor
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series in t and s2:

w2(s,t,u) � w2 +
∂w2

∂s2 s2 +
∂w2

∂t
t + 1

2
∂2w2

∂t2 t2 + � � � , (4.29)

where the derivatives are evaluated at s = t = 0. Similarly, ftsm(t,u) can be written as
a Taylor series in t. The s- and t-integrations can be carried out. The w2(0,0,u)ftsm(0,0)
term yields the model density ρ0, hence the residual density ρ1 is

ρ1 = hs2gsmiδρ (4.30)

with

δρ = �π
1Z

0

du w1(u)
��

∂w2

∂s2 +
∂2w2

4∂t2

�
ftsm+ w2

∂2ftsm

4∂t2

	
, (4.31)

with w2 and ftsm evaluated at s = t = 0. Hence δρ is independent of the shape of
gsm. This relation even holds if gsm also depends on λm and ν0. The resulting fgsm
can be approximated by

fgsm � ftsm + hs2gsmiδ f (4.32)

where δ f = ftsmfδρg is also independent of gsm. Thus, all models with sharply
peaked gsm functions can effectively be described by the one-parameter family
(4.32).

We have computed δ f for an E5 Kuzmin-Kutuzov model with q = 0,1,2 and
s2

max = 0.01 and 0.1. The results are displayed in Figure 10 as shaded surfaces. To
verify that δ f is indeed independent of gsm, i.e. of q and smax, we compare the
difference of two δ f-functions obtained for a different set of (q,smax) with δ f itself.
It is clear from Figure 10 that the differences are indeed much smaller, so that (4.32)
holds to high accuracy.

4.4 Spherical limit

When γ � α , the prolate spheroidal coordinates (λ ,φ ,ν) reduce to spherical coordi-
nates (r,θ ,φ) with r2 = λ +α (e.g., dZ). The potential (2.2) now is spherical, and equals
V(r) = �G(λ ). The thin-orbit model reduces to the spherical model built exclusively
with circular orbits (ZH, xIIg). Our iterative scheme will produce spherical models
with a pre-assigned distribution of relative orbital thickness. We summarize briefly
how the algorithm simplifies in this case.

In the limit γ = α , we must have ν = ν0 = �α , so that x = 0. This reduces
the expressions for w1 and w2 that appear in the basic relation (3.10) to the forms
already given in equation (4.1). Furthermore, the thin-orbit function ftsm becomes
a function of λm only. It can be evaluated without the need for integration since the
density at radius rm, say, is provided only by the circular orbits with radius rm. We
write ftsm as (cf. ZH, corrected for a typographical error of a factor of 3)

ftsmfρig(rm) =
ρi(rm)

π2rmκ2
0 (rm)

, (4.33)
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where κ2
0 is the epicyclic frequency, given by rκ2

0 (r) = 3V�(r) + rV��(r), and rm is
defined by r2

m = λm + α . Also,

cg =
r3
m

Sg(rm)
, (4.34)

where Sg is the integral in the denominator of the definition (3.4). It contains
the factor j∂Jλ /∂s2j which is given in equation (A3), and must be evaluated with
�γ = ν0 = �α . Finally, the function U* defined in equation (2.15) reduces to

U* =
U[�α ,λ1,λ1,λ2]U[�α ,λ1,λ2,λ2]p

U[�α ,λ1,λ ,λ2]
. (4.35)

We write r2
1 = λ1 +α and r2

2 = λ2 +α , so that r1 and r2 are the inner- and outer radius
reached by an orbit, and r2

m = 1
2(r2

1 + r2
2). Since U(λ ) = �(λ + α)2G(λ ) = r4V(r), it

follows from the definition (2.9) of the divided differences that the function U* is
a combination of V(r) and its derivative V�(r) evaluated at r, r1 and r2. These are
related to the variables s and t by

s =
2(r2

2 � r2
1)

r2
m

, t =
r2 � r2

m
r2
m

. (4.36)

so that U* = U*(r,s,t), cg = cg(r,t) and ftsm = ftsm(r,t). This means that we can carry
out the u-integration in equation (3.10) to give π.

Substitution of the above results and exchange of the order of the s- and t-
integrations, then reduces the basic relation (3.10) for the residuals ρi to

ρi+1(r) = ρi(r)� 4
p

2
π

smaxZ
�smax

dt
Hg(r,t)

(1 + t)3/2
r2
mρi(rm)

Sg(rm)κ2
0 (rm)

, (4.37)

where rm = r(1 + t)�1/2, and we have defined

Hg(r,t) =
s2

maxZ
t2

ds2
p

s2 � t2
gsm(s)U*(r,s,t). (4.38)

Hence, we can choose a function gsm, evaluate Hg(r,t) once, and then compute ρi+1
at each radius r as a single weighted integral over ρi(r). In practice it is convenient
to use rm rather than t as the integration variable in equation (4.37). No further
work is needed to find the entire distribution function fsm = fgsmg̃sm of the model,
because it is given by

fsm(rm,s) =
gsm(s)

π2rmSg(rm)κ2
0 (rm)

�X
i=0

ρi(rm). (4.39)
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Calculation of the distribution function is thus considerably faster than in the flat-
tened case, where computation of each ρi requires a double integration over a
distribution function ftsm which itself is evaluated as a quadrature.

We remark that the arguments rm and s of the above spherical distribution
function each depend on the classical integrals of motion E and L2. The relations
follows from

E =
r2

2V(r2)� r2
1V(r1)

r2
2 � r2

1
,

L2 = 2r2
1r2

2
V(r2)� V(r1)

r2
2 � r2

1
.

(4.40)

with r2
1 = r2

m(1 � s) and r2
2 = r2

m(1 + s). For given rm and s these relations must
generally be inverted numerically to give the associated E and L2.

4.5 Disks

The iterative scheme (2.22)–(2.23) can also be applied in the limit where the density
flattens to a circular disk with surface density Σm(λ ) =

R
ρm dz, where λ + α = R2.

The only orbits that can now be populated are those in the equatorial plane z = 0, so
that we must have ν = ν0 = �γ and hence u = 1 in our fundamental relation (3.10).
This leads to a number of simplifications.

When u � 1, the thin-orbit function ftsm, defined in equation (2.19) can be
approximated as

ftsmfρig =
1

8π2
q
λm + γ

1
U[�γ ,λm,λm,λm]

q
U[�γ ,� α ,λm,λm]q
U[�γ ,� γ ,λm,λm]

lim
u�1

n ∂
∂u

uZ
0

ρi(λm,u�) du�p
u� u�

o
,

(4.41)
where ρi(λm,u�) = Σi(λm)δ (u� � 1). The function cg now is

cg =
(λm + α)

q
λm + γ

Dg(λm)
, (4.42)

with Dg the integral in the denominator of equation (3.4), evaluated at ν = ν0 = �γ .
The function U* reduces slightly, and becomes

U* = U[�γ ,λ1,λ1,λ2] U[�γ ,λ1,λ2,λ2]

s
U[�γ ,� γ ,λ1,λ2]

U[�γ ,λ1,λ ,λ2] U[�γ ,� α ,λ1,λ2]
. (4.43)

If we write R2
1 = λ1 + α , R2

2 = λ2 + α , R2
m = λm + α , and use U(λ ) = �(λ + α)(λ +

γ )G(λ ) = R2(R2 + γ � α)V(R), with V(R) the potential in the equatorial plane, then
we can express all the above third-order divided differences in terms of V and its
derivatives. In particular, we have

U[�γ ,� α ,λ ,λ ] = 1
2Ω

2
0(R),

U[�γ ,λ ,λ ,λ ] = 1
8κ

2
0 (R),

(4.44)
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with κ0 the epicyclic frequency defined in Section 4.3, and Ω0 the circular frequency,
given by RΩ2

0(R) = V�(R). The cylindrical radius R coincides with the spherical
radius r in the equatorial plane, so equation (4.36) can be used to find U* = U*(R,s,t),
cg = cg(R,t) and ftsm = ftsm(R,t).

We substitute the above approximations in equation (3.10), and integrate if over
z in order to obtain the basic relation for the residuals in the surface density. The
u-integration can be carried out, and we are left with

Σi+1(R) = Σi(R)� 4
π

smaxZ
�smax

dt H̃g(R,t)R2
mΩ0(Rm)Σi(Rm)

(1 + t)3/2(1 + xt)1/2Dg(Rm)κ2
0 (Rm)

, (4.45)

where Rm = R(1 + t)�1/2, x = (γ � α)/(R2
m + γ � α), and we have defined

H̃g =
s2

maxZ
t2

ds2gsm(s)U*(R,s,t)

p
(1 + xt)2 � (1� x)2s2
p

s2 � t2
p

1� s2
. (4.46)

Just as in the spherical limit, the iterative scheme (2.22)–(2.23) simplifies consider-
ably. We can choose a function gsm(s), integrate it to get H̃g(R,t), and then evaluate
Σi+1 at radius R by a single quadrature. We have written gsm here as a function of s
alone, but a dependence on Rm can be included easily.

The three-dimensional distribution function of an infinitesimally thin disk can
be written as

fsm(Jλ ,Jφ ,Jν) = fdisk(Jλ ,Jφ )
δ (Jν)
2π

, (4.47)

where the division by 2π ensures that fdisk(Jλ ,Jφ) is the proper distribution function
for the disk considered as a two-dimensional system. It follows from equations
(2.22) and (4.45) that our scheme gives fdisk as

fdisk(Rm,s) =
Ω0(Rm)
πκ2

0 (Rm)
gsm(s)

Dg(Rm)

�X
i=0

Σi(Rm). (4.48)

The distribution function (4.48) can be written as a function of E and Jφ = Lz by use
of equation (4.40), with r replaced by R, and L2 by L2

z .
We conclude that our iterative scheme provides a swift way to construct dis-

tribution functions for spheres and disks with a chosen distribution of the relative
weights of orbits with different ‘thickness’ r2

2� r2
1 and mean radial extent r2

m. Based
on our results in Sections 4.1 and 4.2, we expect the scheme to converge quickly,
except for choices of gsm that put a lot of weight on radial orbits, i.e., that have
gsm(1) > 0.

5 Concluding remarks
We have presented a simple numerical scheme for the construction of three-integral
distribution functions for self-consistent and non-consistent oblate galaxy models
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with a potential of Stäckel form. The intrinsic velocity moments can be computed
simultaneously. The algorithm allows one to choose in advance the distribution of
the inner and outer turning points of the short-axis tube orbits that are populated. It
then derives the entire distribution function from the density distribution by means
of an iterative process that starts from the explicitly known distribution function
of the thin-orbit (maximum streaming) model, in which only the tubes with equal
inner and outer turning points are occupied. We have shown that this scheme works
well, and is capable of producing tangentially anisotropic models with a substantial
radial velocity dispersion within a few iteration steps. The algorithm simplifies
considerably in the spherical and disk limits.

Dehnen & Gerhard (1993) have shown that three-integral flattened models dis-
play a large variety of observable kinematic properties, which include the line-of-
sight mean velocity and velocity dispersion, as well as the entire distribution of the
line-of-sight velocity (the velocity profile), all as a function of projected position
on the sky. The observable kinematics of the tangentially anisotropic models con-
structed here can be computed in a straightforward way by numerical integration
of the velocity moments and the distribution function, all of which are given with
high accuracy by the algorithm.

We have investigated three special cases where three-integral distribution func-
tions can be found without iteration.

First, models that have modest radial dispersions can be approximated ade-
quately by a one-parameter family of distribution functions, which is insensitive
to the detailed shape of the assigned function gsm, but depends only on its first
moment. We will use this family in Chapter 4 to investigate the stability of cold
oblate models.

Second, the structure of the model near the foci of the prolate spheroidal coor-
dinate system in which the equations of motion separate provides information on
the convergence of the algorithm. When the function gsm is chosen such that only
a vanishingly small number of orbits with Lz = 0 and a large outer turning point
are occupied, the density near the foci is determined locally, i.e., by stars on orbits
that are very close to the z–axis oscillations that just reach the foci. We have derived
the local behaviour of the distribution function in all such models, and we have
shown by analysis of the first residual density that the algorithm is very likely to
converge in these cases, as indeed found numerically. However, when Lz = 0 orbits
with large outer turning points contribute significantly to the density at the foci —
which occurs in the f(E,Lz) model, and in strongly radially anisotropic models —
our algorithm appears to have problems, at least when we take ftsm as initial guess
for fgsm. In view of Bishop’s (1986) work, we expect that a similar iterative scheme
can be used for such models, but with f(E,Lz) as zeroth order distribution function.

Third, the distribution functions of the models also simplify at large radii. There
they reduce to a known factor times the distribution function of the thin-orbit model,
which can be calculated easily. The internal velocity moments similarly simplify at
large radii. This is useful, as it allows a straightforward calculation of the observable
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kinematic properties in the outer regions of these anisotropic flattened models.
We intend to do so in a future paper. Absorption line kinematic measurements
of elliptical galaxies now reach beyond two effective radii, and a comparison of
these data with anisotropic models of the kind produced by our algorithm should
provide further constraints on the presence and shape of a massive dark halo and
the dynamics of the outer luminous regions of these systems (e.g., Carollo et al.
1995).

Finally, we remark that the iterative scheme is not restricted to oblate galaxy
models. Prolate Stäckel models have two families of tube orbits, and the thin-orbit
solutions have been described by Hunter et al. (1990). By applying our algorithm
separately to the two tube orbit families, we can construct models with thick tubes.
Triaxial Stäckel models contain three families of tube orbits as well as box orbits.
The thin-orbit distribution functions for all three tube families can be found by
simple quadratures (Hunter & de Zeeuw 1992; Arnold, de Zeeuw & Hunter 1994),
and these can again be thickened by our algorithm. The tube orbits account for
part of the density; the remainder must be reproduced by the box orbits. Their
distribution function can be found by (numerically) solving a set of linear equations
after the tube orbits have been populated. This last construction step is the same in
thin and thick orbit models. Work on these triaxial models is in progress.

It is a pleasure to thank Richard Arnold and Marijn Franx for useful discussions
and for comments on the manuscript.
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Appendix A. The function ∂Jλ /∂s2

In order to evaluate cg defined in equation (3.4), we need to calculate j∂Jλ /∂s2j at
fixed ν0 and λm. The action Jλ as a function of the turning points (ν0,λ1,λ2) is defined
in equation (2.11) as a single quadrature. Upon transformation to (ν0,λm,ε) we have

Jλ =
p

2
π

λm+εZ
λm�ε

dλ
p

(λ � λm + ε)(λm � λ + ε)

(λ + α)
q
λ + γ

q
(λ � ν0)U[ν0,λm � ε ,λ ,λm + ε]. (A1)

Since s = ε/(λm + α), we have, at fixed λm,

∂Jλ
∂s2 =

(λm + α)2

2ε
∂Jλ
∂ε

. (A2)

The integrand in equation (A1) vanishes at the lower and upper limits of integra-
tion, so we can simply carry out the differentiation with respect to ε inside the
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integral. This is straightforward upon repeated use of the definition (2.9) of divided
differences. The result can be written compactly as:

∂Jλ
∂s2 =

(λm + α)2

π
p

2

λ2Z
λ1

dλ
(λ + α)

s
λ � ν0

λ + γ

s
U[ν0,λ1,λ ,λ2]

(λ2 � λ )(λ � λ1)

�
n

1 +
(λ2 � λ )(λ � λ1)U[ν0,λ1,λ1,λ ,λ2 ,λ2]

U[ν0,λ1,λ ,λ2]

o
.

(A3)
This is a function of ν0, λ1 and λ2, and hence depends on ν0, λm and ε , or s. We
remark that the expressions for Jλ and ∂Jλ /∂s2 are invariant under the exchange
λ1 � λ2. This means that both these functions are even in s, and hence are functions
of s2.

We found it convenient to evaluate Jλ (ν0,λm,s) and ∂Jλ /∂s2(ν0,λm,s) by transfor-
mation to the integration variable w, defined as

w =
2λ � λ1 � λ2

λ1 + λ2
=
λ � λm

ε
=

t
s
. (A4)

Then dλ = s(λm + α)dw, and the integration limits are w(λ1) = �1 and w(λ2) = 1. As
a result

Jλ =
p

2
π

s2(λm + α)
q
λ � ν0

1Z
�1

dw
q

1� w2

p
1 + (1� x0)sw

1 + sw

s
U[ν0,λ1,λ ,λ2]

λ + γ
,

∂Jλ
∂s2 =

(λm + α)
p
λm � ν0

π
p

2

1Z
�1

dwp
1� w2

p
1 + (1� x0)sw

1 + sw

s
U[ν0,λ1,λ ,λ2]

λ + γ

�
n

1 +
s2(λm + α)2(1� w2)U[ν0,λ1,λ1,λ ,λ2 ,λ2]

U[ν0,λ1,λ ,λ2]

o
,

(A5)

where we still have to substitute λ = λm + sw(λm + α), λ1 = λm � s(λm + α), and
λ2 = λm + s(λm + α). The quantity x0 is defined in equation (4.19):

x0 =
�α � ν0

λm � ν0
, (A6)

so that 0 � x0 � 1. It is a constant as far as the integration over w is concerned.
In the thin-orbit limit we have λ1 = λm = λ2, i.e., s = 0, and hence

Jλ = 0,

∂Jλ
∂s2 = (λm + α)

s
(λm � ν0)U[ν0,λm,λm,λm]

2(λm + γ )
.

(A7)

Substitution in equation (3.4) for cg now immediately gives (3.5).
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Appendix B. Approximations at large radii
The various third-order divided differences U[τ0,τ1,τ2,τ3] that occur in the fun-
damental integral equation simplify when the potential V becomes Keplerian 	
�GM/λ�1/2 when λ � 
 (ZH, Hunter & de Zeeuw 1992). Here we need the
case τ0 � �α and �α � τ1,τ2,τ3. Upon substitution of the asymptotic behaviour
U(λ ) � �GMλ 3/2 in the definition (2.9) we obtain

U[ν,λ1,λ2,λ3] � GM
(
p
λ1 +

p
λ2)(

p
λ1 +

p
λ3)(

p
λ2 +

p
λ3)

,

U[σ,ν,λ1,λ2] � GMp
λ1λ2(

p
λ1 +

p
λ2)

.
(B1)

The function U*(λ ,ν; ν0,λ1,λ2) defined in equation (2.15) can therefore be approxi-
mated by

U* � (GM)3/2

4
(
p
λ1 +

p
λ )1/2(

p
λ +

p
λ2)1/2

p
λ1λ2(

p
λ1 +

p
λ2)7/2 . (B2)

In terms of the variables s and t this can be written as:

U* � (GM)3/2

29/2
(1 + t)9/4

λ9/4 L(s,t), (B3)

where

L(s,t) = 25/2 [
p

1 + t +
p

1� s]1/2[
p

1 + t +
p

1 + s]1/2
p

1� s2[
p

1� s +
p

1 + s]7/2 , (B4)

so that L(0,0) = 1 and L(s,t) is even in s.
When �α � λ1 � λ2, the integral (2.11) for the action Jλ is elementary and

independent of ν0. It is given by

Jλ �
p

2GM
(λ 1/4

2 � λ1/4
1 )2

(
p
λ1 +

p
λ2)1/2 . (B5)

Transformation to the variables s and t results in

Jλ �
p

2GM
λ1/4

(1 + t)1/4
[(1 + s)1/4 � (1� s)1/4]2

[
p

1 + s +
p

1� s]1/2 . (B6)

Straightforward differentiation with respect to s now gives

∂Jλ
∂s2 �

p
GM
4

λ1/4

(1 + t)1/4 h(s), (B7)

where

h(s) =

p
2[4 + 2

p
1� s2 � (1� s2)1/4(

p
1� s +

p
1 + s)]

(1� s2)3/4[
p

1� s +
p

1 + s]5/2 , (B8)
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so that h is even in s. It is not difficult to show that h(0) = 1 and h(s) > 1 for 0 < s � 1.
The normalization function cg(ν0,λm) can now be evaluated by substituting the

above approximations in the definition (3.4). It becomes independent of ν0, and can
be written as

cg � 4
Cg
p

GM
λ5/4

(1 + t)5/4 , (B9)

where the constant Cg is given by

Cg =
1Z

0

ds2 gsm(s)h(s). (B10)

Since h(s) � 1, it follows that Cg � 1 for normalized gsm.
The intrinsic velocity moments are computed by inserting (3.18) as weight func-

tions in the fundamental equation (3.17). With the help of equation (B1) we can
approximate the velocities (3.18):

v2
λ =

GMp
λ

Lλ
v (s,t),

v2
ν =

GMp
λ

Lν
v(s,t)(1� u),

v2
φ =

GMp
λ

Lφ
v (s,t)u,

(B11)

where the (s,t)-dependent part has been separated:

Lλ
v =

2(s2 � t2)

(1 + t)
3
2 (
p

1� s +
p

1 + s)(
p

1 + t +
p

1� s)(
p

1 + t +
p

1 + s)
,

Lν
v =

2((1 + t)2 � s2)p
1� s2(

p
1� s +

p
1 + s)

p
1 + t

,

Lφ
v =

2
p

1� s2

(
p

1� s +
p

1 + s)
p

1 + t
,

(B12)

so that Lφv (0,0) = Lν
v(0,0) = 1 and Lλ

v (0,0) = 0.

Appendix C. Approximations near the focal corner
Near the focal corner in the (ν0,λm)–plane, where λm = ν0 = �α , the function
U[ν0,λ1,λ ,λ2] can be approximated by U[�α ,� α , � α ,� α] = U���(�α) > 0, so that
it can be taken out of the integral for Jλ . It then follows that

∂Jλ
∂s2 �

(λm + α)
p
λm � ν0q

2(γ � α)

q
U���(�α) j(x0,s), (6.1)
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where

j(x0,s) =
1
π

1Z
�1

dwp
1� w2

p
1 + (1� x0)sw

1 + sw
. (6.2)

The trigonometric substitution w = cos t, followed by use of the integral tables of
Byrd & Friedman (1971), shows that

j(x0,s) =
2

π
p

1 + (1� x0)s
[(1� x0)K(k) +

x0

1 + s
Π(α2,k)], (6.3)

where K and Π are the complete elliptic integrals of the first and third kind, respec-
tively, with arguments given by

α2 =
2s

1 + s
, k2 =

2(1� x0)s
1 + (1� x0)s

. (6.4)

in the thin-orbit limit j(0,0) = 1, so that expression (6.1) reduces to (A7) evaluated at
λm = ν0 = �α . Two special cases of interest are

j(0,s) =
2

π
p

1 + s
K(k) = 2F1(1

4 ,3
4 ; 1; s2),

j(1,s) =
1p

1� s2
.

(6.5)

Here we have used formulae 8.114 and 9.134.1 of Gradshteyn & Ryzhik (1980,
hereafter GR), to write j(0,s) explicitly as a (hypergeometric) function of s2.

The function cg can now be approximated as

cg(ν0,λm) �
q

2(γ � αp
U���(�α)

1
Jg(x0)

, (6.6)

with

Jg(x0) =
1Z

0

ds2 gsm(s)j(x0,s). (6.7)

This shows that cg(ν0,λm) has radial behaviour



Chapter III

Potential-density pairs in
axisymmetric coordinates

We present a general scheme for constructing potential-density basis sets in
axisymmetric coordinates. A number of examples are given, starting from
simple functions. The basis sets constructed are useful for galaxy modelling,
N-body simulations and three-dimensional stability analyses of dynamical
equilibria. Symbolic manipulation software implementing the technique is
available.

Preliminary version of a paper co-authored by David J.D. Earn.



52 Chapter III

1 Introduction

Potential-density (PD) pairs are the basic building blocks of galaxy models (e.g.,
Binney & Tremaine 1987, chapter 2). Due to the linearity of Poisson’s equation,
r2Φ = 4πGρ, complicated models can be constructed as linear combinations of
simple PD pairs. More to the point, the potential and density of any reasonable
mass configuration can be approximated arbitrarily well by sufficiently many terms
of an expansion in a complete basis of PD pairs. Such expansions are exceedingly
useful, for modelling of real objects, N-body simulations and stability analyses of
dynamical equilibria.

Much effort has been devoted to finding PD basis sets where both the potential
and density are simple expressions in elementary or special functions (e.g., Clutton-
Brock 1972, 1973; Kalnajs 1976; Qian 1992, 1993; Hernquist & Ostriker 1992; Earn
1995). Discovering convenient and biorthogonal basis sets suited to particular prob-
lems is usually very difficult, and attempts can easily lead to intractable integrals
or unmanageable expressions. Fortunately, modern computers running symbolic
manipulation programs can overcome the requirement of simplicity of the expres-
sions. Only the computability is important. Once computable basis functions are
available they can be tabulated and accurately interpolated for efficiency.

In this paper we describe several ways to generate PD basis sets starting from
simple functions. The starting functions can be tailored to the problem at hand,
which makes this approach very powerful. These methods are in principle appli-
cable to all coordinate systems, but in this paper we concentrate on (orthogonal)
axisymmetric coordinates. In the case of spherical coordinates this type of basis
construction has already been explored (Saha 1993) and applied to practical prob-
lems (Saha 1991). In many cases spheroidal or cylindrical coordinates are more
appropriate. In particular, some of the basis sets described below have been used
in stability studies of oblate galaxy models (Chapter 4).

Many PD sets in spherical coordinates are based on spherical harmonics. In
Section 3 we generalize this and show how to build basis sets from spheroidal and
cylindrical harmonics. Section 4 examines the use of these harmonic PD sets to
model finite systems. The harmonic functions are not very well suited for flattened
coordinate systems ; Section 5 describes alternative PD sets.

2 Coordinate systems

The coordinates used in this paper are spherical (S), oblate spheroidal (OS), prolate
spheroidal (PS) and cylindrical. All systems are denoted (u,v,φ), where u is the
‘radial’, v the ‘angular’ coordinate and φ � [0,2π) the azimuth. In the case of
cylindrical coordinates, u and v are Cartesian coordinates in the planes of fixed φ .
If we follow the deformation of the coordinates from spherical via spheroidal to
cylindrical, we see that the lines of constant angular variable in prolate coordinates
become lines of constant z in the cylindrical limit; when viewed as the limiting case
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CC PS S OS CP
Cylindrical Prolate Spheroidal Spherical Oblate Spheroidal Cylindrical

(u,v) (R,z) (ξ ,η) (r, cos θ) (ξ ,η) (z,R)
0 � u < � 1 � u < � 0 � u < � 0 � u < � �� < u < �
�� < v < � �1 � v � 1 �1 � v � 1 �1 � v � 1 0 � v < �

hu 1 e
q

u2�v2

u2�1 1 e
q

u2+v2

u2+1 1

hv 1 e
q

u2�v2

1�v2 u e
q

u2+v2

1�v2 1
hφ u e

p
(u2 � v2)(1� v2) u e

p
(u2 � v2)(1� v2) v

R u e
p

(u2 � 1)(1� v2) u
p

1� v2 e
p

(u2 + 1)(1� v2) v
z v euv uv euv u

Table 1. The axisymmetric coordinate systems used in this paper. The plots show the coordinate
systems in the (Cartesian) xz-plane, where z is the symmetry axis. The cylindrical system is present
twice: surfaces of constant ‘radial’ coordinate u are cylinders (CC) or planes (CP). The scaling
parameter e is determined by the position of the focal point z = e at ξ = η = 1 in PS and focal ‘circle’
R = e at ξ = 0,η = 0 in the OS system (see also Abramowitz & Stegun (1972) x21. For the plots e = 1 is
used.

of an oblate spheroidal system, the ‘angular’ coordinate is R. The structure of the
harmonic functions (x3) is different in each of these two limits so we give them
distinct labels in Table 1: CC is the cylindrical system where surfaces of constant
‘radial’ coordinate are cylinders, while in CP these surfaces are planes.

The metric coefficients hτ (τ = u,v,φ) are defined as

h2
τ =

�
∂x
∂τ

�2

+
�
∂y
∂τ

�2

+
�
∂z
∂τ

�2

, (2.1)

with (x,y,z) the standard Cartesian coordinates. The gradient and Laplacian opera-
tors are given by

r =
�

1
hu

∂
∂u

,
1
hv

∂
∂v

,
1
hφ

∂
∂φ

�
,

r2 =
1

huhvhφ

3X
i=1

∂
∂τi

�
hτj hτk

hτi

∂
∂τi

�
,

(2.2)

where (i,j,k) in the last equation is a cyclic permutation of (1,2,3) and (τ1,τ2,τ3) =
(u,v,φ).
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CC PS S OS CP
u = R; v = z u = ξ , v = η u = r; v = cosθ u = ξ ; v = η u = z; v = R

r2
v,m

d2

dv2
d
dv (1� v2) d

dv � m2

1�v2
d
dv (1� v2) d

dv � m2

1�v2
d
dv (1� v2) d

dv � m2

1�v2
1
v

d
dvv d

dv � m2

v2

r2
u,l,m

1
u

d
du u d

du � l2 d
du (u2 � 1) d

du � l(l + 1) d
du u2 d

du � l(l + 1) d
du (u2 + 1) d

du � l(l + 1) d2

du2 � l2

�m2

u2 � m2

u2�1 � m2

u2+1
c(u,v) 1 e2(u2 � v2) u2 e2(u2 + v2) 1

Φlm
v (v) 1

2π eilv nlmPm
l (v) nlmPm

l (v) nlmPm
l (v)

q
l

2π Jm(lv)

Hlm
i (u) Im(lu) Pm

l (u) ul (�i)l+mPm
l (iu) elu

Hlm
o (u) Km(lu) Qm

l (u) u�l�1 il+mQm
l (iu) e�lu

Table 2. The separated Laplace operator and the solutions of the homogeneous Laplace equation for

the coordinate systems of Table 1. The norm nlm =
q

2l+1
4π

(l�jmj)!
(l+jmj)! (�1)max(0,m). The prefactors for Hlm

i and

Hlm
o in the OS system have been chosen to make the functions real-valued.

3 PD pairs based on harmonics
The potential Φ that corresponds to a given density ρ is the unique solution of
Poisson’s equation, r2Φ = 4πGρ with appropriate boundary conditions. For galax-
ies, ρ must be non-negative and it is customary to insist that Φ be negative and
continuously differentiable. Satisfactory boundary conditions are that the spherical
average of Φ vanishes at infinity (e.g., Pfenniger 1984).

For the axisymmetric coordinate systems given in Table 1, the homogeneous
Poisson equation (Laplace’s equation) separates into three ordinary differential
equations (ODEs) when the potential is of the form Φu(u)Φv(v)Φφ(φ). In the S, OS
and PS systems, the angular parts Φv(v)Φφ(φ) of the separated solutions are called
spherical or spheroidal harmonics. Similarly, we group the v and φ factors of the
separated Laplace solutions together and call them ‘cylindrical harmonics’ in the
CC and CP cases. The (v,φ)-harmonics form a complete orthonormal basis set for
functions of v and φ in all systems.

If a potential is separable with harmonic (v,φ) factors then the associated density
is also of this form, and the radial functions for the PD pair are related through an
ODE. Rather than try to find special solutions, we simply choose a set of radial
basis functions for the potential and differentiate to find the corresponding density
functions. Because the harmonics appear in both the potential and density, the inner
product of two basis functions reduces to a 1D integral, which can be evaluated
rapidly numerically if not analytically.

The choice of radial basis set must be made with some care, since the boundary
conditions must always be satisfied. Before formulating a useful condition for the
radial functions alone, we take a closer look at Poisson’s equation.

3.1 Separating Poisson’s equation

The separation of Poisson’s equation is treated in the literature (e.g., Morse &
Feshbach 1953). In this subsection, we review the results to introduce our notation.
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A separable solution of Poisson’s equation, r2Φ = 4πGρ, is of the form

Φ(u,v,φ) = Φu(u)Φv(v) eimφ . (3.1)

The Laplacian operator can be split into u- and v-dependent parts (see Table 2) so
the left hand side of Poisson’s equation can be written as

r2Φ =
1

c(u,v)

h
r2

u,α ,m + r2
v,m + α2

i
Φu(u)Φv(v) eimφ , (3.2)

where c(u,v) is a metric factor and α is a separation constant that arises from solving
the equation

r2
v,mΦv(v) + α2Φv(v) = 0. (3.3)

We choose the constantα2 to be positive in keeping with the convention for spherical
coordinates. Choosing a negative constant does not yield additional independent
solutions. For the S, OS and PS coordinates α2 = l(l + 1) where l � 0 is an integer;
for CC and CP α = l � 0 is a real number.

The differential operator for u, r2
u,α ,m, depends on both separation constants m

and α . There are two solutions Hlm
i (u) and Hlm

o (u) of the homogeneous equation

r2
u,α ,mΦu(u) = 0, (3.4)

of which Hlm
i (u) is regular for u = umin (the lowest value of the u-coordinate: 1 for

PS and 0 for the others) and Hlm
o (u) is regular as u ��.

Table 2 summarizes the solutions Φlm
v , Hlm

i and Hlm
o for the five coordinate

systems. The Φlm
v functions have been normalized so that an arbitrary function

f(v,φ) can be written
f(v,φ) =

X
l,m

clmΦ
lm
v (v) eimφ , (3.5)

with
clm =

Z Z
wv(v)Φlm

v (v)* e�imφ f(v,φ) dvdφ , (3.6)

where the weight function wv(v) = v for CP and wv(v) = 1 for all the other coordinate
systems.

3.2 Orthonormal basis of potential functions

The harmonics Φlm
v (v) eimφ form a complete, orthonormal set on the ‘sphere’ u =

constant (Hobson 1965, Morse & Feshbach 1953). They can be extended to a basis
for all space by appending a complete set of radial factors

n
Flmn

u (u) : n = 0,1,2, � � �

o
to

each (l,m)-harmonic. It is most convenient to start with a basis of potential functions
and derive the corresponding density functions

n
Dlmn

u (u)
o

by differentiation:

Dlmn
u = r2

u,l,mFlmn
u . (3.7)
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Any potential can be written as a sum of the basis functions:

Φ = 4πG
X
l,m,n

dlmnFlmn
u (u)Φlm

v (v) eimφ , (3.8a)

and the corresponding density is

ρ =
1

c(u,v)
X
l,m,n

dlmnDlmn
u (u)Φlm

v (v) eimφ , (3.8b)

and c(u,v) is given in Table 2 for the different coordinate systems.
There is considerable freedom in choosing the radial basis

n
Flmn

u (u)
o
. To be

formally complete, the basis must be able to represent any ‘reasonable’ function of
u on the (infinite) u-domain. A useful ansatz is the form

Flmn
u (u) = Wlm(u)f lmn(u), (3.9)

where Wlm(u) is a fixed function that is suggested by the nature of the physical
problem, and flmn are polynomials of degree n in a finite variable derived from u.
In this paper we shall use the functions

Flmn
u (u) =

1
(u + h)p �

un

(u + h)n , (3.10)

for n � 0, where h > 0 and p � 1 are free parameters. It is then possible to represent
any analytic, integrable function of u. The function W00(u) = (u + h)�p with p � 1
ensures that the total mass associated with a basis function is finite in the S, OS and
PS systems. We choose the flmn functions to be polynomials in tu = u/(u + h), which
increases monotonically with u, ranging from 0 to 1.

Ideally, the basis set should be orthonormal with respect to the inner product

hΦ1,Φ2i = � 1
4πG

ZZZ
Φ1r2Φ2huhvhφ dudvdφ , (3.11)

for two potential functions. The inner product of two harmonic basis functions
reduces to

hFlmk
u ,Flmn

u iu = �
Z

wu(u)Flmk
u (u)*Dlmn

u (u) du , (3.12)

with wu(u) = u for the CC system, e for OS and PS and 1 for S and CP.
It is not immediately clear that (3.12) is indeed an inner product. Three condi-

tions have to be satisfied for all potential functions F1,F2,F3:

(i) hαF1 + βF2,F3iu = αhF1,F3iu + βhF2,F3iu,
(ii) hF1,F2iu = hF2,F1i*u, and

(iii) hF1,F1iu � 0.
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Condition (i) is manifest, but (ii) and (iii) are non-trivial. For the OS coordinates,
we can integrate (3.12) by parts to obtain

hF1,F2iu =
1

4πG

�
�F*

1(0)
dF2(0)

du
+
Z �

0
(u2 + 1)

dF*
1

du
dF2

du
+
�

l(l + 1) +
m

1 + u2

�
F*

1F2 du
�

=
1

4πG

�
dF*

1(0)
du

F2(0)� F*
1(0)

dF2(0)
du

�
+ hF2,F1i*u.

(3.13)
Condition (ii) holds only for radial functions F that satisfy vanishing conditions,
F�(0) = 0 and/or F(0) = 0. The same is true for CP coordinates. For the three
other coordinate systems it is sufficient that the radial functions are bounded: the
equivalent of the first term in (3.13) is proportional to

lim
u�umin

(u� umin)F*
1(u)

dF2(u)
du

, (3.14)

where F*
1(u) is bounded, hence F�2(u)/(u � umin) � 0 for u � umin and the term

vanishes. From (3.13) it is evident that condition (iii) is then satisfied as well. The
n = 0,1-functions (3.10) do not satisfy the vanishing conditions: for n = 0 both
Flm0

u (0) and d
duFlm0

u (0) are non-zero, while for n = 1 the derivative does not vanish. In
physical terms, a non-zero F�(0) means that the u = ξ -component of the force field
corresponding to the potential F is not continuous for all points in the equatorial
plane within the ‘focal circle’ (ξ = 0,η = 0). For physically relevant potentials, the
coefficients of Flm0

u and Flm1
u are related to produce a zero derivative at ξ = 0. Hence

we modify (3.10) slightly:

F̃lm0
u = Flm0

u + p
hFlm1

u ,

F̃lmn
u = Flm,n+1

u for n > 0.
(3.15)

Even if a basis is not orthogonal, the Gram-Schmidt algorithm can be applied to
make it orthonormal. An arbitrary potential component Φlm

u (u) can then be written
as

Φlm
u (u) =

X
n
hΦlm

u ,Flmn
u iuFlmn

u (u) . (3.16)

Since hΦ1,Φ2i = hΦ2,Φ1i*, (3.16) allows us to compute the expansion coefficients
from a given mass density to obtain the potential, as well as from a given potential
using the density basis functions.

Saha (1991) used this technique to construct a basis set for perturbations of
spherical galaxies. Saha (1993) points out that it is not necessary for the basis to be
orthogonalized; the coefficients of an expansion (3.16) can be found by solving of a
set of linear equations, which is equivalent to orthonormalization. In practice, the
difference is whether to solve the linear equations before (Gram-Schmidt) or after
(Saha 1993) the expansion coefficients have been found.
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Figure 1. The potential (top) and density (bottom) of the perfect oblate spheroid for e = 0.5,
an E3 galaxy, as logarithmic gray scale and (white) contour plot. The black contours show the OS
(left) and PS (right) coordinate system. The OS system matches the equipotential and equidensity
contours of the model more closely.

3.3 Example: an oblate galaxy model

One of the applications of PD basis sets used in many N-body calculations is to
compute the gravitational force�rΦ when a density is known. The potential itself
is also used to check the conservation of energy in the system. As an example,
consider the perfect oblate spheroid (de Zeeuw 1985) with density

ρP(R,z) =
M

π2
p

1� e2

�
1 + R2 +

z2

1� e2

��2

(3.17a)

and potential

ΦP = �2GM
π

Φτ(ξ )�Φτ(η)
ξ2 � η2 , (3.17b)

where
Φτ(τ) =

τ
e

arctan
eτp

1� e2
, (3.17c)

and (ξ ,η) are PS coordinates. The flattening varies from e = 0 (sphere) to e = 1 (disk).
Figure 1 shows the density and potential of this model for e = 0.5. Throughout this
paper we use G = 1 and M = 1 when plotting functions.

We use the global basis functions (3.15) in OS coordinates to reproduce the
density and potential of the model. The OS system is used because it matches the
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Figure 2. The coefficients ci for the expan-
sion of the E3 perfect oblate model in basis sets
GOS1 and GOS2. Plotted is log jcij as function
of the values of (l,n) for the starting basis func-
tion (before Gram-Schmidt).

contours of the model density and potential more closely than the PS system, as can
be seen in Figure 1. In fact, the density contour of ρ = ρcentre/4 coincides with the
ξ = 1/e2 � 1 contour. We construct two basis subsets, GOS1 and GOS2, of 10 and 30
elements, respectively. Each basis element consists of a single function (3.15):

GOS1 : (l,m) = (0,0) n = 0 � � � 5 and
(l,m) = (2,0) n = 0 � � � 5.

GOS2 : (l,m) = (0,0) n = 0 � � � 9,
(l,m) = (2,0) n = 0 � � � 9 and
(l,m) = (4,0) n = 0 � � � 9.

The parameter h is set to the arbitrary value 1. Figure 2 shows the expansion
coefficients of the orthogonalized basis functions, which generally consist of several
elementary functions (3.15) with the same l-value. The errors in the density and
potential of the fits are displayed in Figure 3. The potential is fitted within 0.3% by
GOS1 and within 0.07% by GOS2. Deviation of the fitted potential from the model
potential introduces an additional acceleration, which is also shown in Figure 3.
Away from the origin R = z = 0, where the acceleration vanishes, the mean error in
the acceleration is 1% for GOS1 and 0.2% for GOS2.

Unfortunately the density is not fitted very accurately, especially near the focal
‘circle’ of the coordinate system. The problem is that a spheroidal harmonic times
a single elementary radial function (3.10) for low n is not a valid potential: it is not
twice differentiable at the focal circle, causing the corresponding density to diverge.
If all l and n values are used in the expansion the singularities of the elementary
functions cancel out. Truncating the basis set, as in GOS 1 and 2, leaves out functions
to compensate for the singularity. It is clear from Figure 3 that the density is fitted
much better away from the focal circle. The singularity is due to the factor c(u,v)
in the Laplace operator being a function of both u and v. If c does not depend on
v, the singularity can be avoided by choosing the radial functions carefully. Hence
this problem is unique to the OS and PS systems.

3.4 Behaviour at large radii

The potential and density can be represented very accurately out to a finite radius
using functions of the form (3.9), but at sufficiently large radii the deviations may



60 Chapter III

Figure 3. The errors in the potential (top, linear gray scale plots) and density (bottom) of the
expansion of the model density from Figure 1 in the GOS1 (left) and GOS2 (right) bases. The white
contours in the density plots are at 0.01,0.1,1. Note that the vertical scales are different in the left
and right hand panels. The error in the accelerations is depicted in the middle left (GOS1) and
right (GOS2) panel: the linear gray scale plot and black contours give its magnitude, the arrows its
direction. Near the origin the ratio diverges because aP vanishes.

be significant. The asymptotic form of Wlm for large u contributes little to the inner
product of a model density and a basis potential function: the largest contribution
comes from the region where the density is large, i.e., the centre. Hence the coeffi-
cient of a basis function in an expansion of the density does not change much when
the form of Wlm is changed at large radii. The Wlm function should match the large
scale behaviour of the radial potential components Φlm

u whenever that is known.
It is tempting to let Wlm have the same behaviour at large radii as the homoge-

neous solution Hlm
o of the Laplace equation, but that will not work in general. As can
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CC u = R σlm(R) =
�R
��

dz
2πR
0

dφ 1
2π e�ilz e�imφ ρ(R,z,φ)

v = z Φlm
u (R) = 4πG

�
Km(lR)

RR
0

uIm(lu)σlm(u) du + Im(lR)
�R
R

uKm(lu)σlm(u) du

�

PS u = ξ σlm(ξ) =
1R
�1

dη
2πR
0

dφ nlmPm
l (η) e�imφ(ξ2 � η2)ρ(ξ ,η,φ)

v = η Φlm
u (ξ) = 4πG

glm

�
Qm

l (ξ)
ξR
1

Pm
l (u)σlm(u) du + Pm

l (ξ)
�R
ξ

Qm
l (u)σlm(u) du

�

S u = r σlm(r) =
1R
�1

dv
2πR
0

dφ nlmPm
l (v) e�imφ ρ(r,v,φ)

v = cosθ Φlm
u (r) = 4πG

2l+1

�
r�l�1

rR
0

ul+2σlm(u) du + rl
�R
r

u1�lσlm(u) du
�

OS u = ξ σlm(ξ) =
1R
�1

dη
2πR
0

dφ nlmPm
l (η) e�imφ(ξ2 + η2)ρ(ξ ,η,φ)

v = η Φlm
u (ξ) = 4πG

iglm

�
Qm

l (iξ)
ξR
0

Pm
l (iu)σlm(u) du + Pm

l (iξ)
�R
ξ

Qm
l (iu)σlm(u) du

�

CP u = z σlm(z) =
�R
0

dR
2πR
0

dφ R
q

l
2π Jm(lR) e�imφ ρ(R,z,φ)

v = R Φlm
u (z) = 2πG

l

�
e�lz

zR
��

elu σlm(u) du + elz
�R
z

e�lu σlm(u) du

�

Table 3. The components Φlm
u in equation (A1) as obtained by the multipole expan-

sion (Appendix A) are listed in this table. These expressions can be used to find the
behaviour of the potential on the boundary of the u-domain.

be seen from the multipole expansion (which is derived in Appendix A; the results
are listed in Table 3), it will be meaningful only when the integrals in the expression
for Φlm

u are bounded on the u-domain. This can fail to occur, even in common
physical situations. As an example, consider a spheroidal mass distribution

ρ(r,θ) = ρv(θ)(1 + r)�4, (3.18)

in spherical (S) coordinates. Because of the symmetry, only the functions σlm(r) with
m = 0 are non-zero. Furthermore it is clear that

σl0(r) = σ0
l0(1 + r)�4, (3.19)

where σ0
l0 depends on ρv. The potential components can readily be computed. To

lowest order in 1/r they read:

Φ00
u (r) � 4πGσ0

00r�1,

Φ10
u (r) � 4

3πGσ0
10r�2 log r,

Φl0
u (r) � 4πGσ0

l0r�2 (l � 2).

(3.20)

In this case the basis set should consist of functions (3.10) with Wl0 � (u + h)�2

for every l � 2, and Wl0 � (u + h)�2 log(u + h) for l = 1. Logarithmic large-radii
behaviour is quite common in expansion procedures (see Qian 1992).
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Figure 4. The coefficient dl00 for the low-
est order basis function in an expansion of the
Kuzmin disk model for l = 0,2, � � � ,60. The basis
is a harmonic PD set in PS coordinates.

3.5 Flattened models in prolate coordinates

Although OS coordinates are the most obvious choice for describing an oblate
galaxy model, there are situations where one is forced to use a different system. For
example, the Kuzmin-Kutuzov model (Kuzmin 1956, Kuzmin & Kutuzov 1962, for
density and potential see eq. (2.24) and (2.25) in Chapter 2 ) is a Stäckel model: the
equations of motion separate in PS coordinates. In dynamical studies it is therefore
preferable to use PS coordinates.

In principle, expansion of the model in PS coordinates is identical to the example
presented in the previous section. Again, we need bounded density functions to
avoid a singularity of the expansion of the density at the focal points. Because the
shape of the coordinate system does not match the shape of the model as close as OS,
more spheroidal harmonics are needed to reach a similar accuracy. As the model
becomes more flattened, the density is more concentrated towards the equatorial
plane. The angular functions become sharply peaked near v = 0 and the number of
spheroidal harmonics needed increases dramatically.

In the limiting case of a disk galaxy it is possible to do part of the expansion
analytically, and indicate the severity of the problem in the nearly flat limit. As an
example, consider the disk limit e = 1 of the Kuzmin-Kutuzov model, which is the
Kuzmin (1956) disk:

ΦK(ξ ,η) = � GM
ξ + jηj

σK(ξ ) =
M

2πξ3 ,
(3.21)

with σK the surface density of the disk. The form of the potential suggests a lowest
order radial function

Fl00
u =

p
3p

2 + 3l(l + 1)
u�1 , (3.22)

which has already been normalized. It is straightforward to compute the expansion
coefficients of the set fFl00

u Φl0
v gl (for even l � 0) by computing the inner product of

the potential basis functions and the model density:

dl00 = h4πGFl00
u Φl0

v ,ΦKi

= (�1)
l
2

p
3
p

2l + 1(l� 1)!!
6
p
π l!!

p
2 + 3l(l + 1)

,
(3.23)
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which has a limiting behaviour of l�1 for large values of l. The dl00 coefficient is
plotted in Figure 4. Because the convergence is so slow, it is clear that any practical
use of the radial function	 spheroidal harmonic series is excluded in this limiting case.

4 Harmonic PD sets for finite systems
There are many examples where the region of interest is limited in the u-coordinate:
finite models for galaxies, localized perturbations etc. The advantage of the radial
basis 	 angular harmonic approach is that we are free to choose a basis that has a
local support, i.e., is zero outside a finite volume. To illustrate this point, assume
that we are studying a shell or ring-like perturbation that is concentrated within
u1 + ε < u < u2 � ε for some small ε > 0. We introduce a radial basis set

Flmn
u (u) =

�
(1� y2)3yn, y � (�1,1),
0, jyj > 1,

(4.1)

for n � 0, with

y =
u� 1

2(u1 + u2)
u2 � u1

. (4.2)

The potential functions are twice differentiable and form a complete basis for func-
tions with support in (u1,u2). Any combination of these functions yields a potential
that is zero at infinity. One would be inclined to accept the set (4.1) as a suitable
basis.

However, the set (4.1) cannot represent the potential of a general ring-like per-
turbation, so it is not complete. From the multipole expansion (derived in Appendix
A, summarized in Table 3) it is clear that a ring-like density has a potential propor-
tional to Hlm

i (u) for u < u1 and Hlm
o (u) for u > u2. The set (4.1) cannot represent the

non-zero potential of the perturbation outside the domain (u1,u2).
There seems to be a paradox here. It is a well-known fact that the potential of

a given density is uniquely determined (e.g., Jackson 1975). Since the multipole
expansion disagrees with a potential expansion in the basis (4.1), the latter must
be wrong. On the other hand, the Hlm� functions, as solutions of the homogeneous
Laplace equation, correspond to zero density. Hence adding Hlm� to the basis does
not improve the ability of the basis to represent the density. What is the status of
these extra functions?

There are two answers to this problem. First, when solving for the potential of
a given density, we are in fact solving a second order partial differential equation.
The general solution includes the two Hlm� functions with free coefficients that are
determined by the boundary conditions. The coefficients have a physical meaning:
e.g., the coefficient of H00

o is connected to the total mass. An expansion (3.16) of a
given density using the basis (4.1) still solves the differential equation, but does not
satisfy the appropriate boundary conditions: it is a solution to a different problem.
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Figure 5. The functions Flm,�2
u and Flm,�1

u for the five coordinate systems, with m = 0 and l = 0
(solid), l = 1 (dashed) and l = 2 (dotted). The functions are normalized by Flm,�2

u (u1) = Flm,�1
u (u2) = 1.

The gray area indicates the domain where the basis functions Flmn
u with n � 0, as given in (4.1), are

non-zero.

Although the Hlm� functions are solutions of the homogeneous Laplace equation,
they do not correspond to zero density on the infinite u-domain: Hlm

i (u) is not
bounded for u � � and Hlm

o (u) for u � umin. Hence they are not proper potential
functions. Any valid potential function that has a limiting behaviour of Hlm

i for
u < u1 and Hlm

o for u < u2 must deviate from either function in the domain (u1,u2),
and hence contribute to the density.

The boundary conditions can be incorporated in the set (4.1) by adding two
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functions

Flm,�2
u (u) =

	

 2X

j=0
alm
�2,j(1 + y)j

�
� (1� y)3 u � D,

= Hlm
i (u) u 
 u1,

= 0 u � u2;

Flm,�1
u (u) =

	

 2X

j=0
alm
�1,j(1� y)j

�
� (1 + y)3 u � D,

= 0 u 
 u1,

= Hlm
o (u) u � u2,

(4.3)

with
alm
�2,0 = 1

8Hlm
i (u1),

alm
�2,1 = 3

16Hlm
i (u1) + u2�u1

16
d
duHlm

i (u1),

alm
�2,2 = 3

16Hlm
i (u1) + 3(u2�u1)

32
d

duHlm
i (u1) + (u2�u1)2

64
d2

du2 Hlm
i (u1);

alm
�1,0 = 1

8Hlm
o (u2),

alm
�1,1 = 3

16Hlm
o (u2)� u2�u1

16
d

duHlm
o (u2),

alm
�1,2 = 3

16Hlm
o (u2)� 3(u2�u1)

32
d
duHlm

o (u2) + (u2�u1)2

64
d2

du2 Hlm
o (u2).

(4.4)

The coefficients for the n < 0 basis functions are not determined in the usual way
(3.16), but by the multipole expansion (Table 3). If there is no inner boundary for
the u-domain (e.g., in the case of a finite galaxy model) the n = �2 function can
be omitted. Examples of Flmn

u functions with n < 0 are given in Figure 5. The set
(4.1), completed with (4.3), has been used in the stability analysis of oblate galaxy
models, which is presented in Chapter 4.

There is a minor issue concerning the application of Gram-Schmidt when the
set (4.1) and (4.3) is used. In all numerical applications the basis set is truncated
to include N elements. It is favourable to have a basis set for which the expansion
coefficients do not depend strongly on N, i.e., when N + 1 elements are present, the
coefficients of the first N elements should not change much. This will not occur if
we use the n < 0 functions above as our lowest order elements. The Gram-Schmidt
procedure then yields a basis set where all elements are non-zero outside the finite
u-domain. It follows that by adding an extra element to the basis, the total change
in the first N coefficients must be equal to the N + 1-th.

A better approach is to consider the n < 0 functions as the highest order elements
of the basis. Then adding another element to the basis does not change the first
N coefficients at all: the n � 0 elements are unchanged in shape. The coefficients
for n < 0 are determined by the density or potential being expanded and do not
depend on the other basis functions, but the shape of the n < 0 functions within the
u-domain does change in this case.
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5 Non-harmonic PD pairs

The method described thus far is not useful if many ‘angular’ functions have to be
included in typical expansions. Apart from the disk limit in the PS system (x3.5)
lengthy expansions may be required in the CC and CP systems. Unfortunately, if
we do not use harmonic (v,φ)-functions the Laplace equation (3.2) does not separate
into three ODEs anymore.

However, we can use a different set of orthonormal v-functions that is better
suited to the problem at hand, and still profit from the separability of the Laplace
operator. Each function of the new set fFkm

v (v)gkm can be expanded in harmonics:

Fkm
v (v) =

X
l

Skm(l)Φlm
v (v), (5.1)

where the summation is an integration in case of CC and CP. The inner product of
two v-functions reduces to

hFjm
v ,Fkm

v iv =
X

l
Sjm(l)Skm(l) = δjk. (5.2)

The new basis functions can be specified directly by prescribing Fkm
v , or by assuming

a basis for the Sjm transforms. If a v-basis is not orthonormal by itself it can be modi-
fied by Gram-Schmidt. We can proceed as in Section 3 by appending a complete set
of radial factors

n
Fkmn

u (u,l) : n = 0,1,2, � � �

o
to each (k,m) angular function. The inner

product of two radial functions, the equivalent of (3.12), becomes

hFkmj
u ,Fkmn

u iu = �X
l

Skm(l)2
Z

wu(u)Fkmj
u (u,l)*r2

u,α ,mFkmn
u (u,l) du , (5.3)

where α = α(l) is the separation constant given in Section 2.
As an example, consider a flat disk in CP coordinates. The ‘radial’ coordinate is

u = z and the density is proportional to δ (u). A basis of a single ‘radial’ function is
sufficient:

Fkm0
u (z,l) = � e�ljzj /

p
2l,

Dkm0
u (z,l) = δ (z)

p
2l,

which has already been normalized. In the equatorial plane z = 0 the potential and
surface density σ are given by

Φ(R,φ) = �2
p
πG

X
k,m

dkm0 eimφ
�Z
0

Sk(l)Jm(lR) dl,

σ(R,φ) = 1p
π

X
k,m

dkm0 eimφ
�Z
0

lSk(l)Jm(lR) dl,

(5.4)
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in analogy with (3.8). The l-integrals are recognized as Hankel transforms. This
result was first used to construct galaxy models by Toomre (1963); for a construction
of a discrete basis for the Sk(l) functions see Clutton-Brock (1972).

The expansion (5.1) is needed only in the process of making the set orthonor-
mal by means of (5.3). The alternative is to compute the inner products directly
by evaluating a two-dimensional (u,v)-integral. The inner product (5.3) of radial
functions is also a two-dimensional integral (for CC and CP) or an integral and an
infinite sum. Hence the detour (5.1) is advantageous only if either the u-integral
in (5.3) or the l-summations can be done analytically. In a future paper we intend
to examine non-harmonic PD pairs where the inner products are evaluated by the
two-dimensional (u,v)-integral directly.

6 Summary and discussion

We have presented several methods for constructing an orthonormal basis of PD
pairs in five types of axisymmetric coordinate systems. The basis is initialized using
simple functions. The considerable freedom in the choice of the starting functions
is one of the key features of the methods and makes it possible to adapt the basis to
the application. We have demonstrated that gravitational systems with an infinite
extent can be fitted accurately. The same methods can be used to set up a basis to
describe the density in a constrained region. Some simple conditions, formulated in
Section 4, have to be satisfied to ensure that the potential and density are physical.

We have intentionally avoided the delicate question of completeness. In nu-
merical applications, completeness is not crucial because we shall never use more
than a few functions and the precise space that is spanned by the full set will not
be important. We are always just producing a reasonably smooth approximation to
the function being expanded.

DE gratefully acknowledges the hospitality of the Sterrewacht Leiden, where
the initial part of the work was done. It is a pleasure to thank Tim de Zeeuw for
careful reading of the manuscript.
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Appendix A. Multipole expansion
For reference we derive the multipole expansion for axisymmetric coordinate sys-
tems, following the derivation given by Binney & Tremaine (1987, x2.4) for spherical
systems.

The principle of the multipole expansion is that the potential Φ corresponding
to a general mass distribution ρ(u,v,φ) is expanded in harmonics Φlm

v (v) eimφ :

Φ(u,v,φ) =
X
l,m

Φlm
u (u)Φlm

v (v) eimφ . (A1)

Note that for CC and CP the summation over l is actually an integration. We want
to find an expression relating the coefficients Φlm

u to ρ.
Formally, we can describe the mass distribution as a collection of ‘shells’ u = u0

(a cylinder in CC and a plane in CP):

ρ(u,v,φ) =
Z
ρ(u0,v,φ)δ (u0 � u) du0. (A2)

For each of the shells with density ρs(u,v,φ) = δ (u � u0)σ(v,φ), the corresponding
potential Φs satisfies the homogeneous Laplace equation outside the shell, hence it
must be a linear combination of the Hlm

i and Hlm
o functions:

Φs(u,v,φ) =

����
����

X
l,m

clmHlm
i (u)Φlm

v (v) eimφ u < u0,
X
l,m

dlmHlm
o (u)Φlm

v (v) eimφ u > u0.
(A3)

At u = u0 the potential is continuous, but not differentiable. The jump in the first
derivative can be computed by applying the Gauss theorem:Z

∂V

rΦs(u,v,φ) � dS =
Z
r2ΦsdV

= 4πG
Z
V

ρs(u,v,φ) dV,
(A4)
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where dS is the normal to the surface ∂V of the volume V and dV is the volume
element. If we apply this to a small volume V which contains the point (u,v,φ) and
is infinitely thin in the u-direction, we find thatZ 1

hu

�
∂Φs(u+,v,φ)

∂u
� ∂Φs(u�,v,φ)

∂u

�
hvhφ dvdφ = 4πG

Z
σ(v,φ)huhvhφ dvdφ , (A5)

where f(u+) = limu��u f(u�) and f(u�) = limu��u f(u�). For an infinitesimally small
volume V this simplifies to

∂Φs(u+,v,φ)
∂u

� ∂Φs(u�,v,φ)
∂u

= 4πGσ(v,φ)h2
u(u,v). (A6)

Substitute equation (A3) into (A6), multiply by wv(v)Φlm
v (v)* e�imφ and integrate

over v and φ to arrive at

clm
dHlm

o (u)
du

� dlm
dHlm

i (u)
du

= 4πGhuu(u)σlm(u), (A7)

where the scale factor hu(u,v) = huu(u)huv(u,v) has been split and

σlm(u) =
Z Z

huv(u,v)Φlm
v (v)* e�imφ σ(v,φ) dvdφ . (A8)

The factors huu and huv depend on the coordinate system:

CC,S,CP : h2
uu = 1, h2

uv = 1;

PS : h2
uu = (u2 � 1)�1, h2

uv = u2 � v2;

OS : h2
uu = (u2 + 1)�1, h2

uv = u2 + v2.

(A9)

The constants clm and dlm have been determined from (A7) using the properties
of the special functions Hlm� :

Hlm
i (u)

d
du

Hlm
o (u)�Hlm

o (u)
d

du
Hlm

i (u) =�����������
�����������

�u�1 CC (GR 8.486.4, 8.486.13, 8.477.2)
� glm

u2 � 1
PS (GR 8.741.2)

�2l + 1
u2 S

�i
glm

u2 + 1
OS (GR 8.741.2)

�2l CP
(A10)

where the GR numbers refer to Gradshteyn & Ryzhik (1980) and

glm = 4m Γ
�

l+m+1
2

�
Γ
�

l+m+2
2

�
Γ
�

l�m+1
2

�
Γ
�

l�m+2
2

� . (A11)

As a last step, the contributions Φs of the shells to the potential Φ can be integrated;
the resulting expressions for Φlm

u are given in Table 3.
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