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Self-gravitating systems and Balescu-Lenard equation

Long-term relaxation

How do systems diffuse?

Local Homogeneous Inhomogeneous
Brownian diffusion Plasma diffusion Galaxy diffusion
Fluctuation-Dissipation Theorem Same process occur in galaxies, but:

Gravity is long-range
; Noise + Stars follow orbits and resonate
+ Galaxies amplify perturbations

A A

Diffusion

How do galaxies evolve on cosmic timescales?
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The gravitational Balescu-Lenard equation

What does it require?

What is it?

Where does it come from?

Does it work?

What's next?
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What does
the Balescu-Lenard Eg.

require?
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Galactic evolution on cosmic timescales

External
erturbations
Other P
population
(e.g., GMCs)
— [ ]
Gravitational /. \ —l
wake —
Test
star ./
./ Field
stars
Quasi-periodic
motion
Galaxies are:
+ Inhomogeneous (complex trajectories) Angle-action coordinates
+ Relaxed (equilibrium states) Quasi-stationary states
+ Resonant (orbital frequencies) Fast timescale vs. cosmic timescale
+ Degenerate (in some regions) 1 Frequency commensurability
+ Self-gravitating (amplification of perturbations) | Linear response theory
+ Discrete (finite-N effects) T
. Nature vs. Nurture
+ Perturbed (effects of the environment) 1
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What does it require?

Inhomogeneous Relaxed Resonant

(X, V)
J F=F(,1
0. )

Q(J) = 0Hy/o)

Angle-Action coordinates

Quasi-stationary states

Fast/Slow timescale

Self-gravitating

1
(@) |

Linear response theory

Discrete & Perturbed

Finite-N effects

1

N
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What does it require?

Inhomogeneous Relaxed Resonant

(X, V)
J F=FQJ,1) Q(J) = 0H,/0)
0,J)

Angle-Action coordinates Quasi-stationary states Fast/Slow timescale
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Inhomogeneous systems

+ Label orbits with integrals of motion

X J
- :
9 :
) I
(O |
< :
x— |
—— 0
Pendulum 0 Angle
+ Angle-Action coordinates + Frequencies’ commensurablllty n- ﬂ J =0
02
0(t) = 6y +t2(J) on 2”/
J(t) = cst.
Trajectories become
straight lines
+ Relaxation
¢ OO 01 OO 6’
(few) tcross> F = F(J,t) Non-Resonant Resonant

1
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Example: Orbits in a disc

0(t) =0 Q(J
Integrable orbits CI)O = CI)O(R, 27) { (t) 0 +1€2(J)

Radial oscillations Vertical oscillations
Vr e

O a R z

Actions J = (]¢,J J) Frequencies €2 = (Q¢, Q. QZ)

r>*z
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What does it require?

Self-gravitating Discrete & Perturbed

1
(@) |

Linear response theory Finite-N effects
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Collective effects

Self-gravitating amplification

Collective effects
S5pext Klimontovich ST Secular Evolution
| (or linear instability) /
/ do
| e(@) |

5q)self(— ) 0
Poisson

Gravitational polarisation essential to
+ Cause dynamical instabilities

+ Induce dynamical friction and mass segregation

+ Accelerate/Slow down secular evolution

1
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Collective effects

Self-gravitating amplification

External Collective effects
Fokker-Planck
bath Klimontovich i
oD Spext ST Secular Evolution

V4

(or linear instability)

1
o1 |/®

5(I)self(— ) 0
Poisson

Gravitational polarisation essential to
+ Cause dynamical instabilities

+ Induce dynamical friction and mass segregation

+ Accelerate/Slow down secular evolution

12
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Typical fate of a self-gravitating system

External
FP

Phase mixing

Perturbations Linear
/\ instability

Initial Relaxation Quasi-stationary Secular evolution
conditions ~ T dyn states Tsec > Tayn
Equilibrium
Violent relaxation
Self-gravity

Balescu-Lenard
Equation

13



Self-gravitating systems and Balescu-Lenard equation

What is
the Balescu-Lenard Eq.?

14
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Balescu-Lenard equation

The master equation for self-induced orbital relaxation
oF(J, 1 o k-QJJ) -k QJ
J,0 ZdeJ, p(K - £2(J) (J"))

ot  NoJ I e, I k- Q) |

X (k- 0 K’- 0 )F(J HF(), t)
aJ aJ’

Some properties

F(J,t) Orbital distorsion in action space JdJ/ Scan of orbital space

1/N  Sourced by finite-N effects
Sp(k-Q(J)—k’-Q(J’)) Resonance cond.

d/dJ - Divergence of a diffusion flux

/ 2
/| gqJ, J', @) | Dressed couplings

(k, k) Discrete resonances

15
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Resonant encounters op(k - Q(J) —Kk’- Q"))

O
@

Collisions are resonant, long-range, correlated

16
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Dressed resonant encounters op(k - (J) —Kk"- Q(]J"))

P

Fluctuations have a wake
oD
| e(w) |

Interactions between wakes

Ddiff (J )

| e(w) |

oD —

Dgig(J) -

(2

Collisions are resonant, long-range, correlated, and dressed

17
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Non-local resonances
op(k - Q(J) — KkK’- Q(J))

g e Ny

N . ;
- \{> == Poisson fluctuation
= and its wake

av

Non-local resonant couplings between dressed wakes

18
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Diffusion Is anisotropic
Generic diffusion equation

oF(J,t) 0 oF
== " Z kD (J) - —
ot oJ |< aJ
Two sources of anisotropies
J J J
A A A
> J; > J; > J;
OF o [ _OF oOF 0 OF oOF 0 OF
T = [P0 o T [P

19
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Balescu-Lenard equation

The master equation for self-induced orbital relaxation
oF(J, 1 o k-QJJ) -k QJ
J,0 ZdeJ, p(K - £2(J) (J"))

ot  NoJ I e, I k- Q) |

X (k- 0 K’- 0 )F(J HF(), t)
aJ aJ’

Some properties

F(J,t) Orbital distorsion in action space JdJ/ Scan of orbital space

1/N  Sourced by finite-N effects
Sp(k-Q(J)—k’-Q(J’)) Resonance cond.

d/dJ - Divergence of a diffusion flux

/ 2
/| gqJ, J', @) | Dressed couplings

(k, k) Discrete resonances

20
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Fokker-Planck equation
+ Test particle of mass m, — P(J,1)

+ Bath particles of mass m, = M, /N — F,(J,?)

PAD_ 0 [y, J 1y 5otk Q) K Q7))
k.k

ot oJ | e, 3,k - Q) |2

X <mbk : i - mK’- i) P, F,(J, 1)

aJ aJ’
er s 0
Diffusion m k.- —
aJ
Vanishes in the collisionless limit N - + oo Ddiff X <5(I)(t) 5@(1"))
Sourced correlations in the potential fluctuations
.. Y
Friction mKk’- Fye
Dy,  (SP(t) 5D(1') )

Induces mass segregation

Sourced by the backreaction of the test particle on the bath 91
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Where does

the Balescu-Lenard Eg.
come from?

22
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‘Where does it come from?\

Heyvaerts 10 Chavanis 12
Direct resolution of BBGKY Quasilinear Klimontovich equation
oF - 0G, (F) A
ot T ot oo 7 o
Heyvaerts et al. 17
Fokker-Planck calculation Functional approach
A A A . OF
AL\ 1® Al 1Jdtdwﬂ — ..
At At ot

BBGKY and degenerate systems
VI, n-Q(J)=0

Stochastic approach and Novikov theorem

dJ
- — 09 ’
gy n@,J, 1

Difficulties

Diffusion in orbital space : F(J, 1)

Timescale decoupling : d(F)/0t < d6F /0t

Accounting for collective effects : 1/|| g.(J, J', @) |

23
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Where does it come from?

Direct resolution of BBGKY
oF . GGZ
o0 7 ot

Difficulties
Diffusion in orbital space : F(J, 1)

Accounting for collective effects : 1/|| g.(J, J', @) |

Timescale decoupling : d(F)/0t < d6F /0t




Self-gravitating systems and Balescu-Lenard equation

Balescu-Lenard from BBGKY

M
N identical particles of mass m=—= in phase space W;=(X;, V)
N
Total specific Hamiltonian
3D self-gravitating systems
N N o
— Uexi =
Hy = Z U (W, + Z m U(W;, W)) -
i=1 i<j S

System characterised by the N-body PDF Py(Wi, ..., Wy, 1)

Continuity equation in phase space

oP,,

0 .

l

Exact Liouville equation

25
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BBGKY hierarchy

Reduced DFs

N
F(W,...,w,,1)=m" N den+1...dwNPN(w1, s Wa, 1)

BBGKY hierarchy

oF,
Y | [Fna H”]n + den+1 [FnH, 5Hn+1]n -0
With

n N
H, = Z Uexi(W;) + Z m U(W;, W)) n-body system
=1

1<J

n
oH, . | = Z Uw,w,. ) Interactions with (n+1)
=1

26
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BBGKY at 1/N

Cluster representation of the DFs

Fy(w,w') = F|(w) F;(W)  + Gy(w, w') G, ~ 1/N
Ay A — 9
Fy(w,w/,w") = ... + Gy(w, W, w") Gy ~ 1/N

Truncation at order 1/N: 2 dynamical quantities
F(w, 1) 1-body DF

G(w,w',f) 2-body correlation
BBGKY - 1

oF , ,
Py | [F,HO]W+ de [G, U(W,w)]W =0
BBGKY - 2

aa(t; F[G.Hy) + de” G(W, w") [F(w), Uw, w")|

+m |[F(w) F(W), Uw, W)| +(Wew) =0

27
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BBGKY - 1
oF

Y | [F, HO]W + de’ [G, U(w, W’)]W = ()

F, Ho] Mean-field advection
g W

dW’[G, U(w, W’)]W Collision term

BBGKY - 2

i)ct; -G, Ho]W + de” G(W', w") [F(w), U(w. W”)]w

+m |F(w) F(W"), UW, )|+ (wew) =0

G, Ho] Mean-tield advection
g W

dw” G(w', w") [F (W), U(w, W”)]W Collective effects

:F(W) F(w’), U(w, W')]W 1-body DF sourcing

28
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How to solve BBGKY

Adiabatic approximation
i.e. evolution along quasi-stationary states

F=FJ,0 ; Hy=HyJ,0) = [FJ),HD| =0

. . Mean-field equilibrium
Timescale separation

0G

A G.Hy| +(...)=0 Tg = Tyyn
— = — de’ [G, U(w, w’)]

ot w

Collision operator

Bogoliubov’s Ansatz

‘;_(: = BBGKY, [F = cst, G| (;—I; = BBGKY, |[F, G(t—~ + o),

29
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The dynamics of correlations
Time evolution of the correlations

0G(w, w’)
ot

-V (G) + V (G) = S(w, W)

Vlasov operator Source term

Linearised Vlasov operator

Vy(f(w)) = [f(w) . Hy(w)]_+ de'[f(w')F()(w), Uw. w) |

Mean field Collective effects
Solved using Green'’s functions

G(w,wW',t) = JdW dw’ Green [w, w|w, W, t] S(w, w’,0)

Green's function Time-independent

Miracle: Vlasov operator acts independently on (W, w’)

Green [W, w|w, W, t] = (reen [W W, t] Green [W" W', t]

Separability 30
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Where does it come from?

Quasilinear Klimontovich equation

(F) _ 05F

9

ot ot

31
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Balescu-Lenard via Klimontovich

Describing one realisation in phase space W = (X, V)

N 3D gravitationalzsystems
Discrete DF Fyw,0) = ) m3p(w — w0) Ve = 5~
i=1 U=
Discrete Hamiltonian Hd(W, 1) = Uext(W)-l'JdW, Fd(w,a ) U(w, w’)
Continuity equation in phase space
_®
oF, 0 | o
of 0w -
®>
Exact Klimontovich equation e
at | [F ds Hd] — O Fy(w)

Phase space 32
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Solving Klimontovich

Perturbative expansion
Fy=Fy+8F with (6F) =0,
Hy=H,+ 6H with (5H) =0.

Adiabatic approximation

{Fo = FyJ, 1),
H,=H,J,?).

Quasi-linear evolution equations

oF,

—— =~ ([9F. 8H] )

O5F

- 6F, Hy| + |Fy, 6H| = 0

X—>
R—>
]—)0 Fy0,))

Angle-Action space

Timescale separation

{TéF = Tdyn
Ty =~ (VN) X Ty

33
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Dynamics of fluctuations

Fast evolution of perturbations (Linearised Klimontovich Eq.)

0OF
- |6F, Hy| + |F,. 6H| = 0
ot
: : ] | ]
oF, HO Mean-field advection .
-FO’ SH| Collective effects
Self-consistent amplification ¢ A &’

J | J

6H = 6H |5F

Timescale separation &Q &j
0

Fy(J) = cst
{HO(J) = cst

Ny
27

0 2%’9

Phase Mixing

34
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Solving for the fluctuations
Linear amplification

5Bl @) — oF(J,0) K - 0F,/0]) SEL(J. )
K= T io-k-QU) w-k Q) Ke?
Bare noise Self-consistent amplification

with the self-consistency

OH(w,t) = JdW'5F(W', HU(w,w’)

Generic form of a Fredholm equation

SHD)| = [|6HD)| + Jd 3 M(1.Y) [sHJ)]

dressed

] . Amplification kernel
Dressing of perturbations

_ [0H(®) Jpare [0H(®) Jare

[5H(a))] dressed 1 — M(w) B | e(w) |

35
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Basis method (l//(p)(w), p(p)(w))

Yfm
for 3D systems

~x*x¢

yPI(w) = de’ U(w, w) pP(W"),

de l//(p)(w) p(q)*(w) — _ 5pq.

“Separable” pairwise interaction

Uw, W) == ) yP(w)y"(w)

P
Plasmas Galaxies
U(X9 X,) — ‘ X X/ |
AD = 4rGp
dk ik-x ,—1k-x’
i C c Poisson equation
2
K|

36
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[5H (a))]bare
| e(w) |

Linear response theory [5H (a’)] dressed

(p)*(J) W Q)(J)

Dielectric function Some properties
Z Sum over resonances
k
Two limits
dJ Scan over orbital space
8pq(60) ~ (0  Cold regime :
o —Kk-Q)) Resonant int.

~ 1 Hot regime
l//(l?) — de’ Up(p) Long-range int.

37
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Dielectric function

Im|w] 1
| e(w) |

Linearly stable
system

Re [w]

Damped mode

Suscleptibi“ty Thermalisation
> | ~ e !
‘8(Qp) ‘ [5H(t)] trans. -

38



Self-gravitating systems and Balescu-Lenard equation

Dressed long-term diffusion

Secular evolution equation

oF, 5
20— (Jor.o])
Dressing comes twice
6H| oF, |6H|;
2 _ are é -0 ~ bare
[ ]dressed ‘ 8(0)) ‘ ot ‘ 8(60) ‘2

Bare Poisson shot noise Relaxation time

1
| oH ‘bare = W é Trelax = N Tdyn

Collective effects can drastically accelerate orbital heating,

in particular on large scales
39
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Balescu-Lenard equation

The master equation for self-induced orbital relaxation
oF(J, 1 o k-QJJ) -k QJ
J,0 ZdeJ, p(K - £2(J) (J"))

ot  NoJ I e, I k- Q) |

X (k- 0 K’- 0 )F(J HF(), t)
aJ aJ’

Some properties

F(J,t) Orbital distorsion in action space JdJ/ Scan of orbital space

1/N  Sourced by finite-N effects
Sp(k-Q(J)—k’-Q(J’)) Resonance cond.

d/dJ - Divergence of a diffusion flux

/ 2
/| gqJ, J', @) | Dressed couplings

(k, k) Discrete resonances

40
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Plasmas Galaxies
Orbital coordinates
(X, V) | ©0.J)
Basis decomposition
U(x,x) o [ S eletrn) Uw, W)= = 2y P (wyy(w)
) k >
Dielectric function
. " Kk -0F/0d])
1 k - oF/ov 5. — dJ (P) ) (@)
_ . (J)
1 k2 d dv kv Pq ;u w—k- Q(J)

Resonance condition

S (k- (v = V")) Sp(k - QJ) —K - Q(J))

41
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Does
the Balescu-Lenard Eg.
work?

42
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Long-range interacting systems are ubiquitous

Homogeneous systems

1

T x— x|

W =

d=3, homogeneous

Hamiltonian Mean Field Model

) = —cos(6 — 6)

d=1, inhomogeneous

Vector Resonant Relaxation

V= —V(s)

d=1, inhomogeneous, degenerate

2D hydrodynamics

®

= —In(|x — x)

d=2, inhomogeneous

Self-gravitating discs

b= — 1

[x — x|

d=2, inhomogeneous

Scalar Resonant Relaxation
p_ [ 264

[x —x'|

d=2, inhomogeneous, degenerate

43
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The diversity of long-range interacting systems

Small dimension Large dimension
d=1 Galactic d="2 Globular
Nuclei clusters
Homogeneous Inhomogeneous
(Xa V) Plasmas (0, J) Galaxies
Hot Cold
1 1 et
~ ] Dark matter > ] Ga.ac’uc:
| e(w) | halo le(w) | discs
Non-degenerate Degenerate
No global resonance Discs V], n-QJ) =0 Keplerian
systems

44



Self-gravitating systems and Balescu-Lenard equation

Balescu-Lenard: A numerical nightmare

op(k-Q(J)—Kk"-Q(J"))
F(J,0)= deJ’
oF(J,n _i.F(J,t) g:‘ | e, I k- QA |°
ot 0J

y (kf.i- .i>F<J>F<J'>
YT

Diffusion flux

= > U D E @) @) E) (@) = 5,,~ M, (@)

P-4 d

Dressed susceptibility coefficients Dielectric matrix

Balescu-Lenard equation

k-o0F/o . do
- Z [ 4J w—Kk- ng) (p) () W(Q)(J) J (27)d (p)( [0, J]) —iko
k

Response matrix Basis elements

45
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With also: A numerical nightmare

+ Integral over d@

. Opk-QU)-k"QT)
+ (Double) integral over dJ Z deJ,
k.k

+ (Triple) sum over k | e (J, I K - Q(J)) |2

+ (Double) sum over (p, q) 0 0 ,
+ Matrix inversion X (k .a_J’_ ‘0_J>F(J)F(J)

+ Resonant denominator Diffusion flux

= 2 WA E @)y J) = 5= M, (@)
p q . . 9.
Dressed susceptibility coefficients Dielectric matrix

_ ; [dJ w—k- Q) e Dy D= n D= J (2m)4 W' (x16.J]) e

Response matrix Basis elements

46
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Does it work?

Galactic discs

Galactic nuclei
\

\

Globular clusters

Keck/UCLA Galactic
Center Group

47



Self-gravitating systems and Balescu-Lenard equation

Does it work?

Galactic discs

|
le(w) | > 1 Galactic nuclei

Dynamically cold system

dg do’
U
2w 2rx

Orbit-averaged interactions

Uw,w)— U=
Globular clusters (W, W) J

(k,K) €1, + oo]

Large number of resonances

48
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Does it work?

Galactic discs

1
| (@) |

Dynamically cold system

> 1
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Galactic discs

o N\
C@ How do stars diffuse in galactic discs?
+ Galactic archeology
+ Formation of spiral arms/bars

+ Local velocity anisotropies

- Inhomogeneous system and intricate orbits + Disc thickening
J + Stellar streams

I,

e B e o @
-

Swing amplification in cold discs

R R AT

......

Tick ., 2018
e J¢ 1 Toomre, 1981

.Sub-struct.ures in action space ~ 3() C . :
’ — ollective effects essential
as observed by GAIA 50
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Prediction for the diffusion
Diffusion flux in action space

oF(J, 1) 0
= -F(J, 1)
ot 0J
Spontaneous formation of anisotropic sub-structures in action space
J, J
U s'euv'voolj,ém'z_:" _ ]

ILR resonance : ILR resonance

©

] ~ Negative Hux
24 - | \ | | | |

Sy

Balescu-Lenard

It works!
51
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Does it work?

Galactic nuclei

do do’
———U

Uw,w)— U=

Orbit-averaged interactions
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Galactic centers

2013.6 What is the diet of a supermassive black hole?

Stellar diffusion in galactic centers
+ Origin and structure of SgrA*
+ Relaxation in eccentricity, orientation

Sources of gravitational waves

+ BHs-binary mergers
+ TDE, EMRIs

Keck/UCLA Galactic
Center Group

S-Cluster of SgrA* / i
Densest stellar system of the galaxy J. Guillonchon C. Sopuerta
Dynamics dominated by the central black hole

Tidal Disruption Event Extreme Mass Ratio Inspiral

What is the long-term dynamics of stars in these very dense systems?

53
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Galactic centers
Domination by the central BH Dynamics of the wires

> >

VJ, n-Qg.(J) =0 In-plane precessions
£ = Q* T Qrel

Degenerate dynamics prec
Orbit-average

Relaxation of wires’ eccentricity
Stars —> Wires via Balescu-Lenard

54
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Galactic centers

Jitters of the wires Dynamics of annuli

Out-of-plane precessions
. _ spin
Second orbit-average Q=2 +Q°

Wires —> Annuli Relaxation of wires’ orientation
via Balescu-Lenard 55
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Resonant Relaxation in Galactic nuclei

Relaxation Relaxation
of eccentricities of orientations

L D(J) .
— L.andau
— Balescu—1l.enard
e N-body

=== Balescu-Lenard W\ ] |
T NV | o - —J
It works!

56
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Does it work?

Globular clusters

(k,K) €1, + oo]

Large number of resonances
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Globular clusters

What is the very long-term evolution of

globular clusters?
+ Orbital heating
+ Core collapse
+ Velocity anisotropies
+ Relaxation of orientations
+ Mass segregation

R ~ 1pc

N~ 10°
Lijge =~ 1010YT

Tyyn = 10°yr

M80, an example of globular clusters
Dense, spherical stellar systems, T ~ lolOyr

without a central BH relax

What is the long-term dynamics of globular clusters?

58
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Balescu-Lenard prediction

Diffusion flux in action space
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Direct N-body

Balescu-Lenard

18

Hamilton et al.,

Lau&Binney., 19

18

Hamilton et al.,

Collective effects are essential

59

Balescu-Lenard better than Chandrasekhar, but still very unsatisfactory
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What's next?
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Resonances

K.k > + 0

Q(J) = cst

Deviations

oF 3 (F,)
— VS
ot ot

What's next?

Kinetic blockings

|
d=1 and —
N2

Integrability

O(x, 1) # P, 1)
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What's next?

Resonances

K.k > + 0

Q(J) = cst
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(Non)-resonant relaxation
What about high-order resonances?

oF(J, 1) B 0 Z ( >]
Y k.kez’
Resonant Relaxation Non-Resonant Relaxation
k|, |K'| ~ 1 k|, |K'|>1
Long-range )

resonances /

\ .

L ocal deflections

Where is the Coulomb logarithm? In A = In(k . ./k

min max)
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Fundamental degeneracies
Dynamics in degenerate frequency profiles

5D(k y Q(J) -k’ Q(J/)) Resonance condition

V), QJ)=0 V], QJ) =

. d6 4o
w= U®L-L) . _J
| X —x'|

Vector Resonant Relaxation Harmonic potential

How does relaxation occur in degenerate systems?
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What's next?

Kinetic blockings

d=1
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Kinetic blockings
Generic Balescu-Lenard equation

oFJ.,n) 10 [ZdeJ' opk - QJ) — K- Q(J))
ot Na) [& | a3, I k- Q) |7

0 0
X (k- k' >F(J, N F(), t)]

oJ 0J’
What happens in 1D systems? No relaxation!
— 1 — oF(J,t 1
k=Kk =k — G _ 1 4
J=J=J ot N
Conspiracy for 2-body effects in 1D y=—cos(d 6

Vi + v, = Cst
Homoageneous
2 2 S
Vi +v; =cst HMF model
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Kinetic theory at order 1/N?

1/N? kinetic equation

ot

_|_
_|_
_|_

Without collective effects ‘ Without inhomogeneity ‘ Without many harmonics

oF(v,) 5 1

0 "~ dy
P 7 1 dv3

N2 ov, ) (vi—v,)

X {5D(2v1—v2—v3) (2

OW C
OW C

OW C

0 0
ov, 0v, Ovs )F (v) F(vp) F(v3)

—(v1<—>v2)}

o collective effects contribute?
o higher-order resonances contribute?
o frequency profiles contribute?

+ What is the structure of kinetic theories at higher order 1/N° ?
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What's next?

Deviations

oF, 3 (F,)
— VS
ot ot
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Faking the dynamics
Kinetic theory predicts the ensemble average dynamics

Fy _— S
Realisations Time
—

Ensemble Average

@ Balescu-Lenard
(Fa) —_—
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Faking the dynamics
5(7)

One realisation vs. the mean kinetic prediction
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Faking the dynamics
" ry @
oF (F0)

What is the statistics
of (large) deviations?

[

Probability of a given realisation?

IP’(-=FO(t)) maximal for ﬂj’(-=-)

Can one fake realisations?

OF
6_td = BL[F,(5)] + nF,()] with the noise {nlFglnlFl) = 22

71



Self-gravitating systems and Balescu-Lenard equation

What's next?

Integrability

O(x, 1) # P, 1)
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Going beyond isolated, integrable, resonant

Systems are not always isolated

N = N(¢) Structure formation
Open clusters
[6H®)| = [H®],  + [8H®)| i

oissozll_ Collisionless relaxation

Systems are not always integrable

dJ d]J dJ Thickened discs
— | = |— | Barred galaxies
ds 1 tot ds resonant ds 1 chaotic Flattened halos

Systems are not always “nicely” resonant

Mean-motion resonances

Q(J) = (QI(J) , € QZ(J)) Eviction resonances

Precession resonances

73



Self-gravitating systems and Balescu-Lenard equation

Conclusions
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Kinetic theory of self-gravitating systems

Long-range interacting systems are ubiquitous

Inhomogeneous Self-gravitating Resonant
(X, V)
| : k - Q(J)
| e(@) |
()

Master equation for dressed resonant relaxation
oF(J,1 |, k-QJ)—Kk"- Q.
3.0 °[2de‘]'%( () (J))
kK’

ot  NOJ e (3, J, k- Q)|

0 0 '
k - k- FJ,0)FJ,
< (ke or - FU RO

Framework mature enough to be confronted to observations
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