Self-gravitating systems and Balescu-Lenard equation

Jean-Baptiste Fouvry, IAP fouvry@iap.fr

Oxford November 2019

Long-term relaxation

How do systems diffuse?

Local Brownian diffusion

Homogeneous **Plasma** diffusion

Inhomogeneous **Galaxy** diffusion

Fluctuation-Dissipation Theorem

Same process occur in galaxies, but:

Gravity is **long-range**

- + Stars follow orbits and resonate
- + Galaxies **amplify** perturbations

How do galaxies evolve on cosmic timescales?

The gravitational Balescu-Lenard equation

What does it require?

What is it?

Where does it come from?

Does it work?

What's next?

What does the Balescu-Lenard Eq. require?

Galactic evolution on cosmic timescales

Galaxies are:

- + Inhomogeneous (complex trajectories)
- + **Relaxed** (equilibrium states)
- + **Resonant** (orbital frequencies)
- + **Degenerate** (in some regions)
- + **Self-gravitating** (amplification of perturbations)
- + **Discrete** (finite-N effects)
- + Perturbed (effects of the environment)

Angle-action coordinates

Quasi-stationary states

Fast timescale vs. cosmic timescale

Frequency commensurability

Linear response theory

Nature vs. Nurture

What does it require?

Inhomogeneous

$$(\mathbf{x}, \mathbf{v})$$
 \downarrow
 $(\boldsymbol{\theta}, \mathbf{J})$

Angle-Action coordinates

Relaxed

$$F = F(\mathbf{J}, t)$$

Quasi-stationary states

Resonant

$$\Omega(\mathbf{J}) = \partial H_0 / \partial \mathbf{J}$$

Fast/Slow timescale

Self-gravitating

Linear response theory

Discrete & Perturbed

 $\frac{1}{N}$

Finite-N effects

What does it require?

Inhomogeneous

$$(\mathbf{x}, \mathbf{v})$$

$$\downarrow$$

$$(\boldsymbol{\theta}, \mathbf{J})$$

Angle-Action coordinates

Relaxed

$$F = F(\mathbf{J}, t)$$

Quasi-stationary states

Resonant

$$\Omega(\mathbf{J}) = \partial H_0 / \partial \mathbf{J}$$

Fast/Slow timescale

Self-gravitating

 $|\varepsilon(\omega)|$

Linear response theory

Discrete & Perturbed

 $\frac{1}{N}$

Finite-N effects

Inhomogeneous systems

+ Label orbits with integrals of motion

 2π

+ Angle-Action coordinates

$$\begin{cases} \boldsymbol{\theta}(t) = \boldsymbol{\theta}_0 + t \, \boldsymbol{\Omega}(\mathbf{J}) \\ \mathbf{J}(t) = \text{cst.} \end{cases}$$

Trajectories become straight lines

+ Relaxation

$$\xrightarrow{\text{(few) } t_{\text{cross}}} F = F(\mathbf{J}, t)$$

+ Frequencies' commensurability : $\mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$

Non-Resonant

 2π 2π 0 0Resonant

Example: Orbits in a disc

Integrable orbits

$$\Phi_0 = \Phi_0(R, z)$$

$$\begin{cases} \boldsymbol{\theta}(t) = \boldsymbol{\theta}_0 + t \, \boldsymbol{\Omega}(\mathbf{J}) \\ \mathbf{J}(t) = \text{cst.} \end{cases}$$

Actions

$$\mathbf{J} = \left(J_{\phi}, J_r, J_z\right)$$

Frequencies

$$\mathbf{\Omega} = \left(\Omega_{\phi}, \Omega_{r}, \Omega_{z}\right)$$

What does it require?

Collective effects

Self-gravitating amplification

Gravitational polarisation essential to

- + Cause dynamical instabilities
- + Induce dynamical friction and mass segregation
- + Accelerate/Slow down secular evolution

Collective effects

Self-gravitating amplification

Gravitational polarisation essential to

- + Cause dynamical instabilities
- + Induce dynamical friction and mass segregation
- + Accelerate/Slow down secular evolution

Typical fate of a self-gravitating system

What is the Balescu-Lenard Eq.?

Balescu-Lenard equation

The master equation for self-induced orbital relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{\left| \varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})) \right|^{2}} \right] \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t) \right]$$

Some properties

$$F(\mathbf{J},t)$$
 Orbital distorsion in action space

1/N Sourced by finite-N effects

$$\partial/\partial \mathbf{J}$$
. Divergence of a **diffusion flux**

(k, k') Discrete resonances

$$\int dJ'$$
 Scan of **orbital space**

$$\delta_{D}(\mathbf{k}\cdot\Omega(\mathbf{J})-\mathbf{k}'\cdot\Omega(\mathbf{J}'))$$
 Resonance cond.

$$1/\|\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)\|^2$$
 Dressed couplings

Resonant encounters

$$\delta_{\mathrm{D}}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))$$

Collisions are resonant, long-range, correlated

Dressed resonant encounters

$$\delta_{\! D}(\mathbf{k}\cdot \boldsymbol{\Omega}(\mathbf{J}) - \mathbf{k}'\cdot \boldsymbol{\Omega}(\mathbf{J}'))$$

Fluctuations have a wake

$$\delta\Phi o \frac{\delta\Phi}{|\varepsilon(\omega)|}$$

Interactions between wakes

$$\mathbf{D}_{\text{diff}}(\mathbf{J}) \to \frac{\mathbf{D}_{\text{diff}}(\mathbf{J})}{|\varepsilon(\omega)|^2}$$

Collisions are resonant, long-range, correlated, and dressed

Non-local resonances

$$\delta_{\! D}(k\cdot \Omega(J) - k'\cdot \Omega(J'))$$

Non-local resonant couplings between dressed wakes

Diffusion is anisotropic

Generic diffusion equation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}} \mathbf{k} \, \mathbf{D}_{\mathbf{k}}(\mathbf{J}) \cdot \frac{\partial F}{\partial \mathbf{J}} \right]$$

Two sources of **anisotropies**

Balescu-Lenard equation

The master equation for self-induced orbital relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \Omega(\mathbf{J}) - \mathbf{k}' \cdot \Omega(\mathbf{J}'))}{\left| \varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \Omega(\mathbf{J})) \right|^{2}} \right] \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t) \right]$$

Some properties

 $F(\mathbf{J},t)$ Orbital distorsion in action space

1/N Sourced by finite-N effects

 $\partial/\partial \mathbf{J}$. Divergence of a **diffusion flux**

(k, k') Discrete resonances

 $\int dJ'$ Scan of **orbital space**

 $\delta_{\mathrm{D}}(\mathbf{k}\cdot\mathbf{\Omega}(\mathbf{J})-\mathbf{k}'\cdot\mathbf{\Omega}(\mathbf{J}'))$ Resonance cond.

 $1/|\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)|^2$

Dressed couplings

Fokker-Planck equation

- + **Test particle** of mass m_t $P(\mathbf{J}, t)$
- + Bath particles of mass $m_{\rm b} = M_{\rm tot}/N$ $F_{\rm b}({\bf J},t)$

$$\frac{\partial P(\mathbf{J}, t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \Omega(\mathbf{J}) - \mathbf{k}' \cdot \Omega(\mathbf{J}'))}{\left| \varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \Omega(\mathbf{J})) \right|^{2}} \right] \times \left(m_{b} \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - m_{t} \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) P(\mathbf{J}, t) F_{b}(\mathbf{J}', t)$$

Diffusion
$$m_b \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}}$$

Vanishes in the collisionless limit $N \to +\infty$

 $\mathbf{D}_{\mathrm{diff}} \propto \langle \delta \Phi(t) \, \delta \Phi(t') \rangle$

Sourced correlations in the potential fluctuations

Friction
$$m_{\rm t} {\bf k}' \cdot \frac{\partial}{\partial {\bf J}'}$$

Induces mass segregation

$$\mathbf{D}_{\mathrm{fric}} \propto \langle \delta P(t) \, \delta \Phi(t') \rangle$$

Sourced by the backreaction of the test particle on the bath

Where does the Balescu-Lenard Eq. come from?

Where does it come from?

Heyvaerts 10

Direct resolution of **BBGKY**

$$\frac{\partial F}{\partial t} = \dots \; ; \quad \frac{\partial G_2}{\partial t} = \dots$$

Chavanis 12

Quasilinear Klimontovich equation

$$\frac{\langle F \rangle}{\partial t} = \dots \; ; \quad \frac{\partial \delta F}{\partial t} = \dots$$

Heyvaerts et al. 17

Fokker-Planck calculation

$$\left\langle \frac{\Delta \mathbf{J}}{\Delta t} \right\rangle \; \; ; \; \; \left\langle \frac{\Delta \mathbf{J} \otimes \Delta \mathbf{J}}{\Delta t} \right\rangle$$

Functional approach

$$i \int dt d\mathbf{w} \lambda \left[\frac{\partial F}{\partial t} + \dots \right]$$

BBGKY and degenerate systems

$$\forall \mathbf{J}, \, \mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$$

Stochastic approach and Novikov theorem

$$\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} = \eta(\boldsymbol{\theta}, \mathbf{J}, t)$$

Difficulties

Diffusion in **orbital space** : $F(\mathbf{J}, t)$

Accounting for **collective effects** : $1/|\epsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)|^2$

Timescale decoupling : $\partial \langle F \rangle / \partial t \ll \partial \delta F / \partial t$

Where does it come from?

Direct resolution of **BBGKY**

$$\frac{\partial F}{\partial t} = \dots \; ; \quad \frac{\partial G_2}{\partial t} = \dots$$

Chavanis 12

Quasilinear Klimontovich equation

$$\frac{\langle F \rangle}{\partial t} = \dots \quad ; \quad \frac{\partial \delta F}{\partial t} = \dots$$

Heyvaerts et al. 17

Fokker-Planck calculation

$$\left\langle \frac{\Delta \mathbf{J}}{\Delta t} \right\rangle \;\; ; \;\; \left\langle \frac{\Delta \mathbf{J} \otimes \Delta \mathbf{J}}{\Delta t} \right\rangle$$

Functional approach

$$i \int dt \, d\mathbf{w} \, \lambda \left[\frac{\partial F}{\partial t} + \dots \right]$$

BBGKY and degenerate systems

$$\forall \mathbf{J}, \, \mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$$

Stochastic approach and Novikov theorem

$$\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} = \eta(\boldsymbol{\theta}, \mathbf{J}, t)$$

Difficulties

Diffusion in **orbital space** : $F(\mathbf{J}, t)$

Accounting for **collective effects** : $1/\left| \, arepsilon_{\mathbf{k}\mathbf{k}'}\!(\mathbf{J},\mathbf{J}',\omega) \, \right|^2$

Timescale decoupling : $\partial \langle F \rangle / \partial t \ll \partial \delta F / \partial t$

Balescu-Lenard from BBGKY

N identical particles of mass $m = \frac{M_{\text{tot}}}{N}$ in phase space $\mathbf{w}_i = (\mathbf{x}_i, \mathbf{v}_i)$

$$\mathbf{w}_i = (\mathbf{x}_i, \mathbf{v}_i)$$

Total specific Hamiltonian

$$H_N = \sum_{i=1}^N U_{\text{ext}}(\mathbf{w}_i) + \sum_{i < j}^N m U(\mathbf{w}_i, \mathbf{w}_j)$$

3D self-gravitating systems $U_{\text{ext}} = \frac{|\mathbf{v}|^2}{2}$ $U = -\frac{G}{|\mathbf{x} - \mathbf{x}'|}$

System characterised by the **N-body PDF** $P_N(\mathbf{w}_1,...,\mathbf{w}_N,t)$

$$P_N(\mathbf{w}_1, ..., \mathbf{w}_N, t)$$

Continuity equation in phase space

$$\frac{\partial P_N}{\partial t} + \sum_{i} \frac{\partial}{\partial \mathbf{w}_i} \cdot \left(P_N \dot{\mathbf{w}}_i \right) = 0$$

Exact Liouville equation

$$\frac{\partial P_N}{\partial t} + \left[P_N, H_N \right]_N = 0$$

BBGKY hierarchy

Reduced DFs

$$F_n(\mathbf{w}_1, \dots, \mathbf{w}_n, t) = m^n \frac{N!}{(N-n)!} \int d\mathbf{w}_{n+1} \dots d\mathbf{w}_N P_N(\mathbf{w}_1, \dots, \mathbf{w}_N, t)$$

BBGKY hierarchy

$$\frac{\partial F_n}{\partial t} + \left[F_n, H_n \right]_n + \int d\mathbf{w}_{n+1} \left[F_{n+1}, \delta H_{n+1} \right]_n = 0$$

With

$$H_n = \sum_{i=1}^n U_{\mathrm{ext}}(\mathbf{w}_i) + \sum_{i < j}^N m U(\mathbf{w}_i, \mathbf{w}_j)$$
 n-body system

$$\delta H_{n+1} = \sum_{i=1}^{n} U(\mathbf{w}_i, \mathbf{w}_{n+1})$$

Interactions with (n+1)

BBGKY at 1/N

Cluster representation of the DFs

$$\begin{cases} F_2(\mathbf{w}, \mathbf{w}') = F_1(\mathbf{w}) F_1(\mathbf{w}') &+ G_2(\mathbf{w}, \mathbf{w}') \\ F_3(\mathbf{w}, \mathbf{w}', \mathbf{w}'') = \dots &+ G_3(\mathbf{w}, \mathbf{w}', \mathbf{w}'') \end{cases} \Longrightarrow \begin{cases} G_2 \sim 1/N \\ G_3 \sim 1/N^2 \end{cases}$$

Truncation at **order 1/N**: 2 dynamical quantities

$$F(\mathbf{w}, t)$$
 1-body DF
$$G(\mathbf{w}, \mathbf{w}', t)$$
 2-body correlation

BBGKY - 1

$$\frac{\partial F}{\partial t} + \left[F, H_0 \right]_{\mathbf{w}} + \int d\mathbf{w}' \left[G, U(\mathbf{w}, \mathbf{w}') \right]_{\mathbf{w}} = 0$$

BBGKY - 2

$$\frac{\partial G}{\partial t} + [G, H_0]_{\mathbf{w}} + \int d\mathbf{w}'' G(\mathbf{w}', \mathbf{w}'') [F(\mathbf{w}), U(\mathbf{w}, \mathbf{w}'')]_{\mathbf{w}}$$
$$+ m [F(\mathbf{w}) F(\mathbf{w}'), U(\mathbf{w}, \mathbf{w}')]_{\mathbf{w}} + (\mathbf{w} \leftrightarrow \mathbf{w}') = 0$$

BBGKY - 1

$$\frac{\partial F}{\partial t} + \left[F, H_0 \right]_{\mathbf{w}} + \int d\mathbf{w}' \left[G, U(\mathbf{w}, \mathbf{w}') \right]_{\mathbf{w}} = 0$$

$$[F, H_0]_{\mathbf{w}}$$

 $[F, H_0]_{\mathbf{w}}$ Mean-field advection

$$\int d\mathbf{w}' [G, U(\mathbf{w}, \mathbf{w}')]_{\mathbf{w}}$$
 Collision term

BBGKY - 2

$$\frac{\partial G}{\partial t} + \left[G, H_0 \right]_{\mathbf{w}} + \left[d\mathbf{w}'' G(\mathbf{w}', \mathbf{w}'') \left[F(\mathbf{w}), U(\mathbf{w}, \mathbf{w}'') \right]_{\mathbf{w}} + m \left[F(\mathbf{w}) F(\mathbf{w}'), U(\mathbf{w}, \mathbf{w}') \right]_{\mathbf{w}} + (\mathbf{w} \leftrightarrow \mathbf{w}') = 0$$

$$\left[G,H_0\right]_{\mathbf{w}}$$

 $[G, H_0]_{\mathbf{w}}$ Mean-field advection

$$\int d\mathbf{w}'' G(\mathbf{w}', \mathbf{w}'') \left[F(\mathbf{w}), U(\mathbf{w}, \mathbf{w}'') \right]_{\mathbf{w}}$$
 Collective effects

$$[F(\mathbf{w}) F(\mathbf{w}'), U(\mathbf{w}, \mathbf{w}')]_{\mathbf{w}}$$
 1-body DF sourcing

How to solve BBGKY

Mean-field equilibrium

Adiabatic approximation

i.e. evolution along quasi-stationary states

$$F = F(\mathbf{J}, t)$$
; $H_0 = H_0(\mathbf{J}, t) \Longrightarrow \left[F_0(\mathbf{J}), H_0(\mathbf{J}) \right]_{\mathbf{w}} = 0$

Timescale separation

$$\frac{\partial G}{\partial t} + \begin{bmatrix} G, H_0 \end{bmatrix}_{\mathbf{w}} + (\dots) = 0$$

$$\frac{\partial F}{\partial t} = - \int d\mathbf{w}' \begin{bmatrix} G, U(\mathbf{w}, \mathbf{w}') \end{bmatrix}_{\mathbf{w}}$$
Collision operator

Bogoliubov's Ansatz

$$\frac{\partial G}{\partial t} = BBGKY_2[F = cst, G] \qquad \frac{\partial F}{\partial t} = BBGKY_1[F, G(t \to +\infty)]$$

The dynamics of correlations

Time evolution of the correlations

$$\frac{\partial G(\mathbf{w}, \mathbf{w}')}{\partial t} + V_{\mathbf{w}}(G) + V_{\mathbf{w}'}(G) = S(\mathbf{w}, \mathbf{w}')$$

Vlasov operator

Source term

Linearised Vlasov operator

$$V_{\mathbf{w}}(f(\mathbf{w})) = \left[f(\mathbf{w}), H_0(\mathbf{w}) \right]_{\mathbf{w}} + \int d\mathbf{w}' \left[f(\mathbf{w}') F_0(\mathbf{w}), U(\mathbf{w}, \mathbf{w}') \right]_{\mathbf{w}}$$

Mean field

Collective effects

Solved using Green's functions

$$G(\mathbf{w}, \mathbf{w}', t) = \int d\tilde{\mathbf{w}} d\tilde{\mathbf{w}}' \operatorname{Green} \left[\mathbf{w}, \mathbf{w}' | \tilde{\mathbf{w}}, \tilde{\mathbf{w}}', t \right] S(\tilde{\mathbf{w}}, \tilde{\mathbf{w}}', 0)$$

Green's function

Time-independent

Miracle: Vlasov operator acts **independently** on $(\mathbf{W}, \mathbf{W}')$

Green
$$[\mathbf{w}, \mathbf{w}' | \tilde{\mathbf{w}}, \tilde{\mathbf{w}}', t] = \text{Green} [\mathbf{w} | \tilde{\mathbf{w}}, t] \text{ Green} [\mathbf{w}' | \tilde{\mathbf{w}}', t]$$

Where does it come from?

Heyvaerts 10

Direct resolution of **BBGKY**

$$\frac{\partial F}{\partial t} = \dots \; ; \; \frac{\partial G_2}{\partial t} = \dots$$

Quasilinear Klimontovich equation

$$\frac{\langle F \rangle}{\partial t} = \dots \quad ; \quad \frac{\partial \delta F}{\partial t} = \dots$$

Heyvaerts et al. 17

Fokker-Planck calculation

$$\left\langle \frac{\Delta \mathbf{J}}{\Delta t} \right\rangle \; \; ; \; \; \left\langle \frac{\Delta \mathbf{J} \otimes \Delta \mathbf{J}}{\Delta t} \right\rangle$$

Functional approach

$$i \int dt \, d\mathbf{w} \, \lambda \left[\frac{\partial F}{\partial t} + \dots \right]$$

BBGKY and degenerate systems

$$\forall \mathbf{J}, \, \mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$$

Stochastic approach and Novikov theorem

$$\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} = \eta(\boldsymbol{\theta}, \mathbf{J}, t)$$

Difficulties

Diffusion in **orbital space** : $F(\mathbf{J}, t)$

Accounting for **collective effects** : $1/\left|\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)\right|^2$

Timescale decoupling : $\partial \langle F \rangle / \partial t \ll \partial \delta F / \partial t$

Balescu-Lenard via Klimontovich

Describing one **realisation** in **phase space** $\mathbf{w} = (\mathbf{x}, \mathbf{v})$

$$\mathbf{w} = (\mathbf{x}, \mathbf{v})$$

Discrete DF

$$F_{d}(\mathbf{w}, t) = \sum_{i=1}^{N} m \, \delta_{D}(\mathbf{w} - \mathbf{w}_{i}(t))$$

3D gravitational systems
$$U_{\text{ext}} = \frac{|\mathbf{v}|^2}{\frac{2}{2}}$$

$$U = -\frac{G}{|\mathbf{x} - \mathbf{x}'|}$$

Discrete Hamiltonian
$$H_d(\mathbf{w}, t) = U_{ext}(\mathbf{w}) + \int d\mathbf{w}' F_d(\mathbf{w}', t) U(\mathbf{w}, \mathbf{w}')$$

Continuity equation in phase space

$$\frac{\partial F_{\mathrm{d}}}{\partial t} + \frac{\partial}{\partial \mathbf{w}} \cdot \left(F_{\mathrm{d}} \dot{\mathbf{w}} \right) = 0$$

Exact Klimontovich equation

$$\frac{\partial F_{\rm d}}{\partial t} + \left[F_{\rm d}, H_{\rm d} \right] = 0$$

Solving Klimontovich

Perturbative expansion

$$\begin{cases} F_{\rm d} = F_0 + \delta F & \text{with } \langle \delta F \rangle = 0, \\ H_{\rm d} = H_0 + \delta H & \text{with } \langle \delta H \rangle = 0. \end{cases}$$

Adiabatic approximation

$$\begin{cases} F_0 = F_0(\mathbf{J}, t), \\ H_0 = H_0(\mathbf{J}, t). \end{cases}$$

Quasi-linear evolution equations

$$\frac{\partial F_0}{\partial t} = -\left\langle \left[\delta F, \delta H \right] \right\rangle$$

$$\frac{\partial \delta F}{\partial t} + \left[\delta F, H_0 \right] + \left[F_0, \delta H \right] = 0$$

Angle-Action space

Timescale separation

$$\begin{cases} T_{\delta F} \simeq T_{\rm dyn} \\ T_{F_0} \simeq \left(\sqrt{N}\right)^2 \times T_{\delta F} \end{cases}$$

Dynamics of fluctuations

Fast evolution of perturbations (Linearised Klimontovich Eq.)

$$\frac{\partial \delta F}{\partial t} + \left[\delta F, H_0 \right] + \left[F_0, \delta H \right] = 0$$

$$[\delta F, H_0]$$

Mean-field advection

$$[F_0, \delta H]$$

Collective effects

$$\delta H = \delta H \left[\delta F \right]$$

Timescale separation

$$\begin{cases} F_0(\mathbf{J}) = \text{cst} \\ H_0(\mathbf{J}) = \text{cst} \end{cases}$$

Phase Mixing

Solving for the fluctuations

Linear amplification

$$\frac{\delta \hat{F}_{\mathbf{k}}(\mathbf{J}, \boldsymbol{\omega})}{\mathrm{i}(\boldsymbol{\omega} - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J}))} - \frac{\mathbf{k} \cdot \partial F_0 / \partial \mathbf{J}}{\boldsymbol{\omega} - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J})} \frac{\delta \hat{H}_{\mathbf{k}}(\mathbf{J}, \boldsymbol{\omega})}{\delta \hat{H}_{\mathbf{k}}(\mathbf{J}, \boldsymbol{\omega})}$$

Bare noise

Self-consistent amplification

with the **self-consistency**

$$\frac{\delta H(\mathbf{w}, t)}{\delta F(\mathbf{w}', t)} U(\mathbf{w}, \mathbf{w}')$$

Generic form of a Fredholm equation

$$\left[\delta H(\mathbf{J})\right]_{\text{dressed}} = \left[\delta H(\mathbf{J})\right]_{\text{bare}} + \int d\mathbf{J}' M(\mathbf{J}, \mathbf{J}') \left[\delta H(\mathbf{J}')\right]_{\text{dressed}}$$

Amplification kernel

Dressing of perturbations

$$\left[\delta H(\omega)\right]_{\text{dressed}} \simeq \frac{\left[\delta H(\omega)\right]_{\text{bare}}}{1 - M(\omega)} = \frac{\left[\delta H(\omega)\right]_{\text{bare}}}{\left[\epsilon(\omega)\right]}$$

Basis method
$$(\psi^{(p)}(\mathbf{w}), \rho^{(p)}(\mathbf{w}))$$

$$\begin{cases} \psi^{(p)}(\mathbf{w}) = \int d\mathbf{w}' U(\mathbf{w}, \mathbf{w}') \rho^{(p)}(\mathbf{w}'), \\ \int d\mathbf{w} \psi^{(p)}(\mathbf{w}) \rho^{(q)*}(\mathbf{w}) = -\delta_{pq}. \end{cases}$$

`Separable" pairwise interaction

$$U(\mathbf{w}, \mathbf{w}') = -\sum_{p} \psi^{(p)}(\mathbf{w}) \psi^{(p)*}(\mathbf{w}')$$

Plasmas

$$U(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

$$\simeq \int \frac{d\mathbf{k}}{|\mathbf{k}|^2} e^{i\mathbf{k}\cdot\mathbf{x}} e^{-i\mathbf{k}\cdot\mathbf{x}'}$$

Galaxies

$$\Delta \Phi = 4\pi G \rho$$

Poisson equation

Linear response theory

$$\left[\delta H(\omega)\right]_{\text{dressed}} = \frac{\left[\delta H(\omega)\right]_{\text{bare}}}{\left|\varepsilon(\omega)\right|}$$

$$\varepsilon_{pq}(\omega) = 1 - \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F_0 / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J})$$

Dielectric function

 $\varepsilon_{pq}(\omega)$

Two limits

$$arepsilon_{pq}(\omega) \simeq 0$$
 Cold regime

$$arepsilon_{pq}(\omega) \simeq 1$$
 Hot regime

Some properties

 $\sum_{\mathbf{k}}$

Sum over resonances

 $\int d\mathbf{J}$

Scan over orbital space

$$\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})$$

Resonant int.

$$\psi^{(p)} = \left| \operatorname{d}\mathbf{w}' U \rho^{(p)} \right|$$

Long-range int.

Dielectric function

Susceptibility

Thermalisation

$$\left[\delta H(t)\right]_{\text{trans.}} \simeq e^{-\eta_p t}$$

Dressed long-term diffusion

Secular evolution equation

$$\frac{\partial F_0}{\partial t} = -\left\langle \left[\delta F, \delta H \right] \right\rangle$$

Dressing comes twice

$$\left[\delta H\right]_{\text{dressed}} = \frac{\left[\delta H\right]_{\text{bare}}}{\left|\varepsilon(\omega)\right|}$$

$$\frac{\partial F_0}{\partial t} \simeq \frac{|\delta H|_{\text{bare}}^2}{|\varepsilon(\omega)|^2}$$

Relaxation time

Bare Poisson shot noise

$$|\delta H|_{\text{bare}} \simeq \frac{1}{\sqrt{N}}$$

 \rightarrow

$$T_{\rm relax} \simeq |\varepsilon|^2 N T_{\rm dyn}$$

Collective effects can **drastically accelerate** orbital heating, in particular on **large scales**

Balescu-Lenard equation

The master equation for self-induced orbital relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \Omega(\mathbf{J}) - \mathbf{k}' \cdot \Omega(\mathbf{J}'))}{\left| \varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \Omega(\mathbf{J})) \right|^{2}} \right] \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t) \right]$$

Some properties

$$F(\mathbf{J},t)$$
 Orbital distorsion in action space

1/N Sourced by finite-N effects

$$\partial/\partial \mathbf{J}$$
. Divergence of a **diffusion flux**

(k, k') Discrete resonances

$$\int dJ'$$
 Scan of **orbital space**

$$\delta_{D}(\mathbf{k}\cdot\Omega(\mathbf{J})-\mathbf{k}'\cdot\Omega(\mathbf{J}'))$$
 Resonance cond.

$$1/|\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)|^2$$
 Dressed couplings

Plasmas

Galaxies

Orbital coordinates

$$(\mathbf{x}, \mathbf{v})$$

$$(\boldsymbol{\theta}, \mathbf{J})$$

Basis decomposition

$$U(\mathbf{x}, \mathbf{x}') \propto \int \frac{d\mathbf{k}}{\mathbf{k}^2} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}$$

$$U(\mathbf{w}, \mathbf{w}') = -\sum_{p} \psi^{(p)}(\mathbf{w}) \psi^{(p)*}(\mathbf{w}')$$

Dielectric function

$$1 - \frac{1}{\mathbf{k}^2} \int d\mathbf{v} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v}}$$

$$\delta_{pq} - \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J})$$

Resonance condition

$$\delta_{\mathrm{D}}(\mathbf{k}\cdot(\mathbf{v}-\mathbf{v}'))$$

$$\delta_{\! \mathrm{D}} \! \left(\mathbf{k} \cdot \boldsymbol{\Omega} \! (\mathbf{J}) - \mathbf{k}' \cdot \boldsymbol{\Omega} \! (\mathbf{J}') \right)$$

Does the Balescu-Lenard Eq. work?

Long-range interacting systems are ubiquitous

The diversity of long-range interacting systems

Small dimension

d = 1

Galactic Nuclei

Homogeneous

 (\mathbf{x}, \mathbf{v})

Plasmas

Hot

Dark matter halo

Non-degenerate

No global resonance

Discs

Large dimension

d = 2

Globular clusters

Inhomogeneous

 $(\boldsymbol{\theta}, \mathbf{J})$

Galaxies

Cold

Galactic discs

Degenerate

$$\forall \mathbf{J}, \, \mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$$

Keplerian systems

Balescu-Lenard: A numerical nightmare

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Balescu-Lenard equation

$$\mathbf{F}(\mathbf{J}, t) = \sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{|\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}))|^{2}} \times \left(\mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} - \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}}\right) F(\mathbf{J}) F(\mathbf{J}')$$

Diffusion flux

$$\frac{1}{\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)} = \sum_{p,q} \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) \mathbf{E}_{pq}^{-1}(\omega) \psi_{\mathbf{k}'}^{(q)*}(\mathbf{J}')$$

Dressed susceptibility coefficients

$$\mathbf{E}_{pq}(\omega) = \delta_{pq} - \mathbf{M}_{pq}(\omega)$$

Dielectric matrix

$$\mathbf{M}_{pq}(\omega) = \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J}) \leftarrow \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) = \int \frac{d\boldsymbol{\theta}}{(2\pi)^d} \psi^{(p)}(\mathbf{x}[\boldsymbol{\theta}, \mathbf{J}]) e^{-i\mathbf{k}\cdot\boldsymbol{\theta}}$$

Response matrix

Basis elements

With also:

- + Integral over $d\theta$
- + (Double) integral over $d\mathbf{J}$
- + (Triple) sum over \mathbf{k}
- + (Double) sum over (p,q)
- + Matrix inversion
- + Resonant denominator
- + Resonance condition

A numerical nightmare

$$\mathbf{F}(\mathbf{J},t) = \sum_{\mathbf{k},\mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{\mathbf{D}}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{|\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}))|^{2}} \times \left(\mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} - \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}}\right) F(\mathbf{J}) F(\mathbf{J}')$$

Diffusion flux

$$\frac{1}{\varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)} = \sum_{p,q} \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) \mathbf{E}_{pq}^{-1}(\omega) \psi_{\mathbf{k}'}^{(q)*}(\mathbf{J}')$$

Dressed susceptibility coefficients

$$\mathbf{E}_{pq}(\omega) = \delta_{pq} - \mathbf{M}_{pq}(\omega)$$

Dielectric matrix

$$\mathbf{M}_{pq}(\omega) = \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J}) \leftarrow \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) = \int \frac{d\boldsymbol{\theta}}{(2\pi)^d} \psi^{(p)}(\mathbf{x}[\boldsymbol{\theta}, \mathbf{J}]) e^{-i\mathbf{k} \cdot \boldsymbol{\theta}}$$

Response matrix

Basis elements

Galactic discs

Dynamically cold system

Globular clusters

$$(\mathbf{k}, \mathbf{k}') \in [[1, +\infty]]$$

Large number of resonances

Galactic nuclei

$$U(\mathbf{w}, \mathbf{w}') \mapsto \overline{U} = \int \frac{\mathrm{d}\theta}{2\pi} \frac{\mathrm{d}\theta'}{2\pi} U$$

Orbit-averaged interactions

Dynamically cold system

Globular clusters

$$(\mathbf{k}, \mathbf{k}') \in [[1, +\infty]]$$

Large number of resonances

Galactic nuclei

$$U(\mathbf{w}, \mathbf{w}') \mapsto \overline{U} = \int \frac{\mathrm{d}\theta}{2\pi} \frac{\mathrm{d}\theta'}{2\pi} U$$

Orbit-averaged interactions

Galactic discs

Inhomogeneous system and intricate orbits

Sub-structures in **action space**, as observed by GAIA

How do stars diffuse in galactic discs?

- + Galactic archeology
- + Formation of spiral arms/bars
- + Local velocity anisotropies
- + Disc thickening
- + Stellar **streams**

Swing amplification in cold discs

 $\frac{1}{|\varepsilon(\omega)|} \simeq 30$

Toomre, 1981

Collective effects essential

Prediction for the diffusion

Diffusion flux in action space

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Spontaneous formation of **anisotropic** sub-structures in action space

Galactic nuclei

$$U(\mathbf{w}, \mathbf{w}') \mapsto \overline{U} = \int \frac{\mathrm{d}\theta}{2\pi} \frac{\mathrm{d}\theta'}{2\pi} U$$

Orbit-averaged interactions

Galactic centers

S-Cluster of **SgrA***

Densest stellar system of the galaxy Dynamics dominated by the **central black hole** What is the diet of a **supermassive black hole**?

Stellar diffusion in galactic centers

- + **Origin and structure** of SgrA*
- + Relaxation in **eccentricity**, **orientation**

Sources of gravitational waves

- + BHs-binary mergers
- + TDE, EMRIs

Tidal Disruption Event

Extreme Mass Ratio Inspiral

What is the long-term dynamics of stars in these very dense systems?

Galactic centers

Domination by the central BH

$$\forall \mathbf{J}, \, \mathbf{n} \cdot \mathbf{\Omega}_{\mathrm{Kep}}(\mathbf{J}) = 0$$

Degenerate dynamics

Orbit-average

Dynamics of the wires

In-plane precessions

$$\Omega_{\mathrm{prec}} = \Omega_{\star} + \Omega_{\mathrm{rel}}$$

Relaxation of wires' eccentricity via **Balescu-Lenard**

Galactic centers

Jitters of the wires

Dynamics of annuli

Out-of-plane precessions

$$\Omega_{\rm out} = \Omega_{\star} + \Omega_{\rm rel}^{\rm spin}$$

Relaxation of wires' orientation

via **Balescu-Lenard**

Resonant Relaxation in Galactic nuclei

It works!

Dynamically cold system

Globular clusters

$$(\mathbf{k}, \mathbf{k}') \in [[1, +\infty]]$$

Large number of resonances

Galactic nuclei

$$U(\mathbf{w}, \mathbf{w}') \mapsto \overline{U} = \int \frac{\mathrm{d}\theta}{2\pi} \frac{\mathrm{d}\theta'}{2\pi} U$$

Orbit-averaged interactions

Globular clusters

M80, an example of globular clusters

Dense, spherical stellar systems,

without a central BH

What is the very long-term evolution of **globular clusters**?

- + Orbital heating
- + Core collapse
- + Velocity anisotropies
- + Relaxation of orientations
- + Mass segregation

$$\begin{cases} R_{\rm sys} \simeq 1 \, \rm pc \\ N \simeq 10^5 \\ T_{\rm life} \simeq 10^{10} \, \rm yr \\ T_{\rm dyn} \simeq 10^5 \, \rm yr \\ T_{\rm relax} \simeq 10^{10} \, \rm yr \end{cases}$$

What is the long-term dynamics of globular clusters?

Balescu-Lenard prediction

Diffusion flux in action space

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Collective effects are essential

Balescu-Lenard better than Chandrasekhar, but still very unsatisfactory

Resonances

$$k,k'\to +\infty$$

$$\Omega(\mathbf{J}) = \mathbf{cst}$$

Kinetic blockings

$$d = 1$$
 and $\frac{1}{N^2}$

Deviations

$$\frac{\partial F_{\rm d}}{\partial t}$$
 vs $\frac{\partial \langle F_{\rm d} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Resonances

$$\mathbf{k}, \mathbf{k}' \to + \infty$$

$$\Omega(\mathbf{J}) = \mathbf{cst}$$

Kinetic blockings

$$d = 1$$
 and $\frac{1}{N^2}$

Deviations

$$\frac{\partial F_{\mathrm{d}}}{\partial t}$$
 vs $\frac{\partial \langle F_{\mathrm{d}} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

(Non)-resonant relaxation

What about high-order resonances?

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}' \in \mathbb{Z}^3} \left(\dots \right) \right]$$

Resonant Relaxation

$$|\mathbf{k}|, |\mathbf{k}'| \simeq 1$$

Non-Resonant Relaxation

Where is the **Coulomb logarithm**?

$$\ln \Lambda = \ln(k_{\min}/k_{\max})$$

Fundamental degeneracies

Dynamics in degenerate frequency profiles

$$\delta_{\! D}(\mathbf{k}\cdot \boldsymbol{\Omega}(\mathbf{J}) - \mathbf{k}'\cdot \boldsymbol{\Omega}(\mathbf{J}'))$$

Resonance condition

$$\forall \mathbf{J}, \ \mathbf{\Omega}(\mathbf{J}) = 0$$

$$\forall \mathbf{J}, \ \mathbf{\Omega}(\mathbf{J}) = \mathbf{\Omega}_0$$

$$\psi = -\int \frac{\mathrm{d}\theta \, \mathrm{d}\theta'}{|\mathbf{x} - \mathbf{x}'|}$$

Harmonic potential

How does relaxation occur in degenerate systems?

Resonances

$$\mathbf{k}, \mathbf{k}' \rightarrow + \infty$$

$$\Omega(\mathbf{J}) = \mathrm{cst}$$

Kinetic blockings

$$d=1$$
 and $\frac{1}{N2}$

Deviations

$$\frac{\partial F_{\mathrm{d}}}{\partial t}$$
 vs $\frac{\partial \langle F_{\mathrm{d}} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Kinetic blockings

Generic Balescu-Lenard equation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{\left| \varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})) \right|^{2}} \right] \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t)$$

What happens in **1D systems**?

$$\begin{cases} \mathbf{k} = \mathbf{k}' = k \\ \mathbf{J} = \mathbf{J}' = J \end{cases}$$

$$\begin{cases} v_1 + v_2 = cst \\ v_1^2 + v_2^2 = cst \end{cases}$$

No relaxation!

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \times 0$$

Kinetic theory at order $1/N^2$

 $1/N^2$ kinetic equation

Without collective effects | Without inhomogeneity | Without many harmonics

$$\frac{\partial F(v_1)}{\partial t} = \frac{1}{N^2} \frac{\partial}{\partial v_1} \left[\mathcal{P} \int \frac{dv_1}{(v_1 - v_2)^4} \int dv_3 \right] \times \left\{ \frac{\delta_D(2v_1 - v_2 - v_3)}{\delta_D(2v_1 - v_2 - v_3)} \left(2 \frac{\partial}{\partial v_1} - \frac{\partial}{\partial v_2} - \frac{\partial}{\partial v_3} \right) F(v_1) F(v_2) F(v_3) \right\}$$

$$-(v_1 \leftrightarrow v_2) \right\}$$

- + How do collective effects contribute?
- + How do higher-order resonances contribute?
- + How do frequency profiles contribute?
- + What is the structure of kinetic theories at **higher order** $1/N^s$?

Resonances

$$\mathbf{k}, \mathbf{k}' \rightarrow + \infty$$

$$\Omega(\mathbf{J}) = \mathrm{cst}$$

Kinetic blockings

$$d=1$$
 and $\frac{1}{N^2}$

Deviations

$$\frac{\partial F_{\rm d}}{\partial t}$$
 vs $\frac{\partial \langle F_{\rm d} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Faking the dynamics

Kinetic theory predicts the ensemble average dynamics

Faking the dynamics

One realisation vs. the mean kinetic prediction

Faking the dynamics

What is the statistics of (large) deviations?

Probability of a given realisation?

$$\mathbb{P}\left(F_{\mathrm{d}}(t) = F_{\mathrm{0}}(t)\right)$$
 maximal for $\mathbb{P}\left(F_{\mathrm{d}}(t) = \langle F_{\mathrm{d}}(t) \rangle\right)$

Can one **fake** realisations?

$$\frac{\partial F_{\rm d}}{\partial t} = \mathrm{BL}[F_{\rm d}(t)] + \eta[F_{\rm d}(t)] \quad \text{with the noise } \left\langle \eta[F_{\rm d}] \, \eta[F_{\rm d}] \right\rangle = ??$$

Resonances $k,k'\to +\infty$ $\Omega(J)=cst$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Going beyond isolated, integrable, resonant

Systems are not always isolated

$$\begin{cases} N = N(t) \\ \left[\delta H(t) \right]_{\text{tot}} = \left[\delta H(t) \right]_{\text{Poisson}} + \left[\delta H(t) \right]_{\text{ext}} \end{cases}$$

Structure formation
Open clusters
Collisionless relaxation

Systems are not always integrable

$$\left[\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} \right]_{\mathrm{tot}} = \left[\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} \right]_{\mathrm{resonant}} + \left[\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} \right]_{\mathrm{chaotic}}$$

Thickened discs
Barred galaxies
Flattened halos

Systems are not always "nicely" resonant

$$\Omega(\mathbf{J}) = (\Omega_1(\mathbf{J}), \epsilon \Omega_2(\mathbf{J}))$$

Mean-motion resonances
Eviction resonances
Precession resonances

Conclusions

Kinetic theory of self-gravitating systems

Long-range interacting systems are ubiquitous

Master equation for dressed resonant relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{\left| \varepsilon_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})) \right|^{2}} \right] \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t)$$

Framework mature enough to be confronted to observations